Bai, L. Q., and Coauthors, 2017: An integrated damage, visual, and radar analysis of the 2015 Foshan, Guangdong, EF3 tornado in China produced by the landfalling Typhoon Mujigae (2015). Bull. Amer. Meteor. Soc., 98, 2619−2640, https://doi.org/10.1175/BAMS-D-16-0015.1.
Bai, L. Q., Z. Y. Meng, K. Sueki, G. X. Chen, and R. L. Zhou, 2020: Climatology of tropical cyclone tornadoes in China from 2006 to 2018. Science China Earth Sciences, 62, 37−51, https://doi.org/10.1007/s11430-019-9391-1.
Baker, A. K., M. D. Parker, and M. D. Eastin, 2009: Environmental ingredients for supercells and tornadoes within Hurricane Ivan. Wea. Forecasting, 24, 223−244, https://doi.org/10.1175/2008WAF2222146.1.
Bunkers, M. J., 2002: Vertical wind shear associated with left-moving supercells. Wea. Forecasting, 17, 845−855, https://doi.org/10.1175/1520-0434(2002)017<0845: VWSAWL>2.0.CO;2.
Bunkers, M. J., B. A. Klimowski, J. W. Zeitler, R. L. Thompson, and M. L. Weisman, 2000: Predicting supercell motion using a new hodograph technique. Wea. Forecasting, 15, 61−79, https://doi.org/10.1175/1520-0434(2000)015<0061: PSMUAN>2.0.CO;2.
Carter, M., J. M. Shepherd, S. Burian, and I. Jeyachandran, 2012: Integration of lidar data into a coupled mesoscale-land surface model: A theoretical assessment of sensitivity of urban-coastal mesoscale circulations to urban canopy parameters. J. Atmos. Oceanic Technol., 29, 328−346, https://doi.org/10.1175/2011JTECHA1524.1.
Chou, M.-D., and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech. Memo. 104606, 85 pp.
Davies-Jones, R., 1984: Streamwise vorticity: The origin of updraft rotation in supercell storms. J. Atmos. Sci., 41, 2991−3006, https://doi.org/10.1175/1520-0469(1984)041<2991:SVTOOU>2.0.CO;2.
Doswell, C. A., and D. W. Burgess, 1993: Tornadoes and tornadic storms: A review of conceptual models. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, C. Church et al., Eds., American Geophysical Union, 161−172.
Eastin, M. D., and M. C. Link, 2009: Miniature supercells in an offshore outer rainband of Hurricane Ivan (2004). Mon. Wea. Rev., 137, 2081−2104, https://doi.org/10.1175/2009MWR2753.1.
Edwards, R., 2012: Tropical cyclone tornadoes: A review of knowledge in research and prediction. Electron. J. Severe Storms Meteorol., 7, 1−61.
Edwards, R., A. R. Dean, R. L. Thompson, and B. T. Smith, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part III: Tropical cyclone tornadoes. Wea. Forecasting, 27, 1507−1519, https://doi.org/10.1175/WAF-D-11-00117.1.
Gentry, R. C., 1983: Genesis of tornadoes associated with hurricanes. Mon. Wea. Rev., 111, 1793−1805, https://doi.org/10.1175/1520-0493(1983)111<1793:GOTAWH>2.0.CO;2.
Green, B. W., F. Q. Zhang, and P. Markowski, 2011: Multiscale processes leading to supercells in the landfalling outer rainbands of hurricane Katrina (2005). Wea. Forecasting, 26, 828−847, https://doi.org/10.1175/WAF-D-10-05049.1.
Hill, E. L., W. Malkin, and W. A. Schulz, Jr., 1966: Tornadoes associated with cyclones of tropical origin-practical features. J. Appl. Meteorol. Climatol., 5, 745−763, https://doi.org/10.1175/1520-0450(1966)005<0745:TAWCOT>2.0.CO;2.
Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103−120, https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.
Kain, J. S., and J. M. Fritsch, 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 2784−2802, https://doi.org/10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.
Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain-Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, K. A. Emanuel and D. J. Raymond, Eds., American Meteorological Society, 165−170, https://doi.org/10.1007/978-1-935704-13-3_16.
Kain, J. S., and Coauthors, 2008: Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP. Wea. Forecasting, 23, 931−952, https://doi.org/10.1175/WAF2007106.1.
Kurihara, Y., M. A. Bender, R. E. Tuleya, and R. J. Ross, 1990: Prediction experiments of Hurricane Gloria (1985) using a multiply nested movable mesh model. Mon. Wea. Rev., 118, 2185−2198, https://doi.org/10.1175/1520-0493(1990)118<2185:PEOHGU>2.0.CO;2.
Kurihara, Y., M. A. Bender, and R. J. Ross, 1993: An initialization scheme of hurricane models by vortex specification. Mon. Wea. Rev., 121, 2030−2045, https://doi.org/10.1175/1520-0493(1993)121<2030:AISOHM>2.0.CO;2.
Lee, W.-C., M. M. Bell, and K. E. Jr. Goodman, 2008: Supercells and mesocyclones in outer rainbands of Hurricane Katrina (2005). Geophys. Res. Lett., 35, L16803, https://doi.org/10.1029/2008GL034724.
Markowski, P. M., and Y. P. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. Wiley-Blackwell, 407 pp.
Markowski, P. M., and N. Dotzek, 2011: A numerical study of the effects of orography on supercells. Atmospheric Research, 100, 457−478, https://doi.org/10.1016/j.atmosres.2010.12.027.
Markowski, P. M., J. M. Straka, E. N. Rasmussen, and D. O. Blanchard, 1998: Variability of storm-relative helicity during VORTEX. Mon. Wea. Rev., 126, 2959−2971, https://doi.org/10.1175/1520-0493(1998)126<2959:VOSRHD>2.0.CO;2.
McCaul, E. W. Jr., 1987: Observations of the Hurricane ‘‘Danny’’ tornado outbreak of 16 August 1985. Mon. Wea. Rev., 115, 1206−1223, https://doi.org/10.1175/1520-0493(1987)115<1206:OOTHTO>2.0.CO;2.
McCaul, E. W. Jr., 1991: Buoyancy and shear characteristics of hurricane-tornado environments. Mon. Wea. Rev., 119, 1954−1978, https://doi.org/10.1175/1520-0493(1991)119<1954:BASCOH>2.0.CO;2.
McCaul, E. W. Jr., and M. L. Weisman, 1996: Simulations of shallow supercell storms in landfalling hurricane environments. Mon. Wea. Rev., 124, 408−429, https://doi.org/10.1175/1520-0493(1996)124<0408:SOSSSI>2.0.CO;2.
McCaul, E. W. Jr., D. E. Buechler, S. J. Goodman, and M. Cammarata, 2004: Doppler radar and lightning network observations of a severe outbreak of tropical cyclone tornadoes. Mon. Wea. Rev., 132, 1747−1763, https://doi.org/10.1175/1520-0493(2004)132<1747:DRALNO>2.0.CO;2.
Molinari, J., D. M. Romps, D. Vollaro, and L. Nguyen, 2012: CAPE in tropical cyclones. J. Atmos. Sci., 69, 2452−2463, https://doi.org/10.1175/JAS-D-11-0254.1.
Noh, Y., W. G. Cheon, S. Y. Hong, and S. Raasch, 2003: Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteorol., 107, 401−427, https://doi.org/10.1023/A:1022146015946.
Novlan, D. J., and W. M. Gray, 1974: Hurricane-spawned tornadoes. Mon. Wea. Rev., 102, 476−488, https://doi.org/10.1175/1520-0493(1974)102<0476:HST>2.0.CO;2.
Rao, G. V., J. W. Scheck, R. Edwards, and J. T. Schaefer, 2005: Structures of mesocirculations producing tornadoes associated with Tropical Cyclone Frances (1998). Pure Appl. Geophys., 162, 1627−1641, https://doi.org/10.1007/s00024-005-2686-7.
Rappaport, E. N., 2000: Loss of life in the United States associated with recent Atlantic tropical cyclones. Bull. Amer. Meteor. Soc., 81, 2065−2074, https://doi.org/10.1175/1520-0477(2000)081<2065:LOLITU>2.3.CO;2.
Rasmussen, E. N., and D. O. Blanchard, 1998: A baseline climatology of sounding-derived supercell and tornado forecast parameters. Wea. Forecasting, 13, 1148−1164, https://doi.org/10.1175/1520-0434(1998)013<1148:ABCOSD>2.0.CO;2.
Richter, H., K. Turner, B. Guarente, and A. Smith, 2017: Radar signatures for severe convective weather: Mid-level mesocyclone. MetEd, COMET Program, UCAR, Available from http://www.meted.ucar.edu/radar/severe_signatures/print_supercell.htm.
Romps, D. M., and Z. M. Kuang, 2010: Do undiluted convective plumes exist in the upper tropical troposphere? J Atmos. Sci., 67, 468−484, https://doi.org/10.1175/2009JAS3184.1.
Schenkel, B. A., R. Edwards, and M. Coniglio, 2020: A climatological analysis of ambient deep-tropospheric vertical wind shear impacts upon tornadoes in tropical cyclones. Wea. Forecasting, 35, 2033−2059, https://doi.org/10.1175/WAF-D-19-0220.1.
Skamarock, W. C., and Coauthors, 2008: A description of the advanced research WRF version 3. NCAR Tech. Note, NCAR/TN-475+STR, 113 pp, https://doi.org/10.5065/D68S4MVH.
Spratt, S. M., D. W. Sharp, P. Welsh, A. Sandrik, F. Alsheimer, and C. Paxton, 1997: A WSR-88D assessment of tropical cyclone outer rainband tornadoes. Wea. Forecasting, 12, 479−501, https://doi.org/10.1175/1520-0434(1997)012<0479:AWAOTC>2.0.CO;2.
Stumpf, G. J., A. Witt, E. D. Mitchell, P. L. Spencer, J. T. Johnson, M. D. Eilts, K. W. Thomas, and D. W. Burgess, 1998: The national severe storms laboratory mesocyclone detection algorithm for the WSR-88D. Wea. Forecasting, 13, 304−326, https://doi.org/10.1175/1520-0434(1998)013<0304:TNSSLM>2.0.CO;2.
Sueki, K., and H. Niino, 2016: Toward better assessment of tornado potential in typhoons: Significance of considering entrainment effects for CAPE. Geophys. Res. Lett., 43, 12 597−12 604, https://doi.org/10.1002/2016GL070349.
Suzuki, O., H. Niino, H. Ohno, and H. Nirasawa, 2000: Tornado-producing mini supercells associated with Typhoon 9019. Mon. Wea. Rev., 128, 1868−1882, https://doi.org/10.1175/1520-0493(2000)128<1868:TPMSAW>2.0.CO;2.
Thompson, R. L., R. Edwards, and J. A. Hart, 2002: Evaluation and interpretation of the supercell composite and significant tornado parameters at the Storm Prediction Center. Proc. 21st Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., J11−J14.
Thompson, R. L., R. Edwards, and J. A. Hart, 2003: Close proximity soundings within supercell environments obtained from the rapid update cycle. Wea. Forecasting, 18, 1243−1261, https://doi.org/10.1175/1520-0434(2003)018<1243:−CPSWSE>2.0.CO;2.
Tochimoto, E., K. Sueki, and H. Niino, 2019: Entraining CAPE for better assessment of tornado outbreak potential in the warm sector of extratropical cyclones. Mon. Wea. Rev., 147, 913−930, https://doi.org/10.1175/MWR-D-18-0137.1.
Trapp, R. J., G. J. Stumpf, and K. L. Manross, 2005: A reassessment of the percentage of tornadic mesocyclones. Wea. Forecasting, 20, 680−687, https://doi.org/10.1175/WAF864.1.
Verbout, S. M., D. M. Schultz, L. M. Leslie, H. E. Brooks, D. J. Karoly, and K. L. Elmore, 2007: Tornado outbreaks associated with landfalling hurricanes in the North Atlantic Basin: 1954−2004. Meteorol. Atmos. Phys., 97, 255−271, https://doi.org/10.1007/s00703-006-0256-x.
Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504−520, https://doi.org/10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.
Weisman, M. L., and J. B. Klemp, 1984: The structure and classification of numerically simulated convective storms in directionally varying wind shears. Mon. Wea. Rev., 112, 2479−2498, https://doi.org/10.1175/1520-0493(1984)112<2479:TSACON>2.0.CO;2.
Yu, X. D., X. P. Yao, T. N. Xiong, X. G. Zhou, H. Wu, B. S. Deng, and Y. Song, 2006: The Principle and Application of Doppler Weather Radar. China Meteorological Press, 314 pp. (in Chinese)