Abarca, S. F., and M. T. Montgomery, 2015: Are eyewall replacement cycles governed largely by axisymmetric balance dynamics? J. Atmos. Sci., 72, 82−87, https://doi.org/10.1175/JAS-D-14-0151.1.
Bao, X. W., L. G. Wu, S. Zhang, H. Z. Yuan, and H. H. Wang, 2020: A comparison of convective raindrop size distributions in the eyewall and spiral rainbands of Typhoon Lekima (2019). Geophys. Res. Lett., 47, e2020GL090729, https://doi.org/10.1029/2020GL090729.
Brauer, N. S., J. B. Basara, P. E. Kirstetter, R. A. Wakefield, C. R. Homeyer, J. Yoo, M. Shepherd, and J. A. Santanello, 2021: The inland maintenance and re-intensification of tropical storm Bill (2015) Part 2: Precipitation microphysics. Journal of Hydrometeorology, 22, 2695−2711, https://doi.org/10.1175/JHM-D-20-0151.1.
Braun, S. A., M. T. Montgomery, and Z. X. Pu, 2006: High-resolution simulation of hurricane Bonnie (1998). Part I: The organization of eyewall vertical motion. J. Atmos. Sci., 63, 19−42, https://doi.org/10.1175/JAS3598.1.
Brown, B. R., M. M. Bell, and A. J. Frambach, 2016: Validation of simulated hurricane drop size distributions using polarimetric radar. Geophys. Res. Lett., 43, 910−917, https://doi.org/10.1002/2015GL067278.
Brown, P. R. A., and H. A. Swann, 1997: Evaluation of key microphysical parameters in three-dimensional cloud-model simulations using aircraft and multiparameter radar data. Quart. J. Roy. Meteor. Soc., 123, 2245−2275, https://doi.org/10.1002/qj.49712354406.
Cecil, D. J., and E. J. Zipser, 2002: Reflectivity, ice scattering, and lightning characteristics of hurricane eyewalls and rainbands. Part II: Intercomparison of observations. Mon. Wea. Rev., 130, 785−801, https://doi.org/10.1175/1520-0493(2002)130<0785:RISALC>2.0.CO;2.
Chang, W. Y., T. C. C. Wang, and P. L. Lin, 2009: Characteristics of the raindrop size distribution and drop shape relation in typhoon systems in the western Pacific from the 2D video disdrometer and NCU C-band polarimetric radar. J. Atmos. Oceanic Technol., 26, 1973−1993, https://doi.org/10.1175/2009jtecha1236.1.
Chen, B. J., Y. Wang, and J. Ming, 2012: Microphysical characteristics of the raindrop size distribution in typhoon Morakot (2009). Journal of Tropical Meteorology, 18, 162−171.
Chen, H. N., V. Chandrasekar, and R. Cifelli, 2019: A deep learning approach to dual-polarization radar rainfall estimation. Preprints, 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC), New Delhi, India, IEEE, 1−2,
Chen, S. S., J. A. Knaff, and F. D. Marks, 2006: Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries deduced from TRMM. Mon. Wea. Rev., 134, 3190−3208, https://doi.org/10.1175/MWR3245.1.
Corbosiero, K. L., and J. Molinari, 2003: The relationship between storm motion, vertical wind shear, and convective asymmetries in tropical cyclones. J. Atmos. Sci., 60, 366−376, https://doi.org/10.1175/1520-0469(2003)060<0366:TRBSMV>2.0.CO;2.
Dehart, J. C., and M. M. Bell, 2020: A comparison of the polarimetric radar characteristics of heavy rainfall from Hurricanes Harvey (2017) and Florence (2018). J. Geophys. Res.: Atmos., 125, e2019JD032212, https://doi.org/10.1029/2019JD032212.
Didlake, A. C., and M. R. Kumjian, 2017: Examining polarimetric radar observations of bulk microphysical structures and their relation to vortex kinematics in Hurricane Arthur (2014). Mon. Wea. Rev., 145, 4521−4541, https://doi.org/10.1175/MWR-D-17-0035.1.
Didlake, A. C., and M. R. Kumjian, 2018: Examining storm asymmetries in Hurricane Irma (2017) using polarimetric radar observations. Geophys. Res. Lett., 45, 13 513−13 522,
Feng, L., S. Hu, X. T. Liu, H. Xiao, X. Pan, F. Xia, G. H. Ou, and C. Zhang, 2020: Precipitation microphysical characteristics of typhoon Mangkhut in Southern China using 2D video disdrometers. Atmosphere, 11, 975, https://doi.org/10.3390/atmos11090975.
Feng, L., X. T. Liu, H. Xiao, L. S. Xiao, F. Xia, X. Hao, H. Q. Lu, and C. X. Zhang, 2021: Characteristics of raindrop size distribution in typhoon Nida (2016) before and after landfall in Southern China from 2D video disdrometer data. Advances in Meteorology, 2021, 9349738, https://doi.org/10.1155/2021/9349738.
Feng, Y. C., and M. M. Bell, 2019: Microphysical characteristics of an asymmetric eyewall in major Hurricane Harvey (2017). Geophys. Res. Lett., 46, 461−471, https://doi.org/10.1029/2018GL080770.
Gao, S. Z., Z. Y. Meng, F. Q. Zhang, and L. F. Bosart, 2009: Observational analysis of heavy rainfall mechanisms associated with severe tropical storm Bilis (2006) after its landfall. Mon. Wea. Rev., 137, 1881−1897, https://doi.org/10.1175/2008MWR2669.1.
Hence, D. A., and R. A. Houze, 2011: Vertical structure of hurricane eyewalls as seen by the TRMM precipitation radar. J. Atmos. Sci., 68, 1637−1652, https://doi.org/10.1175/2011JAS3578.1.
Homeyer, C. R. and Coauthors, 2021: Polarimetric signatures in landfalling tropical cyclones. Mon. Wea. Rev., 149, 131−154, https://doi.org/10.1175/MWR-D-20-0111.1.
Houze, R. A. Jr., 2010: Clouds in tropical cyclones. Mon. Wea. Rev., 138, 293−344, https://doi.org/10.1175/2009mwr2989a.1.
Houze, R. A. Jr., 2014: Cloud Dynamics. 2nd ed. Elsevier.
Huang, H., and Coauthors, 2022: Microphysical characteristics of the phase-locking VRW-induced asymmetric convection in the outer eyewall of super typhoon Lekima (2019). Geophys. Res. Lett., 49, e2021GL096869,
Huang, W., and X. D. Liang, 2010: Convective asymmetries associated with tropical cyclone landfall: β-plane simulations. Adv. Atmos. Sci., 27, 795−806, https://doi.org/10.1007/s00376-009-9086-3.
Janapati, J., B. K. Seela, M. V. Reddy, K. K. Reddy, P. L. Lin, N. T. Rao, and C. Y. Liu, 2017: A study on raindrop size distribution variability in before and after landfall precipitations of tropical cyclones observed over southern India. Journal of Atmospheric and Solar-Terrestrial Physics, 159, 23−40, https://doi.org/10.1016/j.jastp.2017.04.011.
Kepert, J., 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part I: Linear theory. J. Atmos. Sci., 58, 2469−2484, https://doi.org/10.1175/1520-0469(2001)058<2469:TDOBLJ>2.0.CO;2.
Kimball, S. K., and M. S. Mulekar, 2004: A 15-year climatology of North Atlantic tropical cyclones. Part I: Size parameters. J. Climate, 17, 3555−3575, https://doi.org/10.1175/1520-0442(2004)017<3555:AYCONA>2.0.CO;2.
Kumjian, M. R., 2013: Principles and applications of dual-polarization weather radar. Part I: Description of the polarimetric radar variables. Journal of Operational Meteorology, 1, 226−242, https://doi.org/10.15191/nwajom.2013.0119.
Kumjian, M. R., 2018: Weather radars. Remote Sensing of Clouds and Precipitation, C. Andronache, Ed., Springer, 15−63,
Li, H. Q., X. T. Liu, H. Xiao, and Q. L. Wan, 2021: Assimilation of polarimetric radar data using an ensemble Kalman filter for the analysis and forecast of tropical storm Ewiniar (2018). Journal of Tropical Meteorology, 27, 94−108, https://doi.org/10.46267/j.1006-8775.2021.010.
Li, H. Q., Q. L. Wan, D. D. Peng, X. T. Liu, and H. Xiao, 2020: Multiscale analysis of a record-breaking heavy rainfall event in Guangdong, China. Atmospheric Research, 232, 104703, https://doi.org/10.1016/j.atmosres.2019.104703.
Lin, W., S. Chen, Y. J. Hu, and D. Li, 2020: The characteristics of RSDs before and after the landing typhoon Meranti. Tropical Cyclone Research and Review, 9, 218−224, https://doi.org/10.1016/j.tcrr.2020.06.003.
Liu, X. T., Q. L. Wan, H. Wang, H. Xiao, Y. Zhang, T. F. Zheng, and L. Feng, 2018: Raindrop size distribution parameters retrieved from Guangzhou S-band polarimetric radar observations. J. Meteor. Res., 32, 571−583, https://doi.org/10.1007/s13351-018-7152-4.
Lonfat, M., F. D. Marks, and S. S. Chen, 2004: Precipitation distribution in tropical cyclones using the tropical rainfall measuring mission (TRMM) microwave imager: A global perspective. Mon. Wea. Rev., 132, 1645−1660, https://doi.org/10.1175/1520-0493(2004)132<1645:PDITCU>2.0.CO;2.
Molinari, J., P. K. Moore, V. P. Idone, R. W. Henderson, and A. B. Saljoughy, 1994: Cloud-to-ground lightning in Hurricane Andrew. J. Geophys. Res.: Atmos., 99, 16 665−16 676,
Park, H. S., A. V. Ryzhkov, D. S. Zrnić, and K. E. Kim, 2009: The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea. Forecasting, 24, 730−748, https://doi.org/10.1175/2008WAF2222205.1.
Park, J., D. H. Cha, M. K. Lee, J. Moon, S. J. Hahm, K. Noh, J. C. L. Chan, and M. Bell, 2020: Impact of cloud microphysics schemes on tropical cyclone forecast over the western North Pacific. J. Geophys. Res.: Atmos., 125, e2019JD032288, https://doi.org/10.1029/2019JD032288.
Qie, X. S., D. X. Liu, and Z. L. Sun, 2014: Recent advances in research of lightning meteorology. Acta Meteorologica Sinica, 75, 1054−1068, https://doi.org/10.11676/qxxb2014.048. (in Chinese with English abstract
Rosenfeld, D., W. L. Woodley, A. Khain, W. R. Cotton, G. Carrió, I. Ginis, and J. H. Golden, 2012: Aerosol effects on microstructure and intensity of tropical cyclones. Bull. Amer. Meteor. Soc., 93, 987−1001, https://doi.org/10.1175/BAMS-D-11-00147.1.
Seela, B. K., J. Janapati, P. L. Lin, C. H. Lan, R. Shirooka, H. Hashiguchi, and K. K. Reddy, 2022: Raindrop size distribution characteristics of the western Pacific tropical cyclones measured in the Palau Islands. Remote Sensing, 14, 470, https://doi.org/10.3390/rs14030470.
Seliga, T. A., and V. N. Bringi, 1976: Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation. J. Appl. Meteorol., 15, 69−76, https://doi.org/10.1175/1520-0450(1976)015<0069:PUORDR>2.0.CO;2.
Tang, Q., H. Xiao, C. W. Guo, and L. Feng, 2014: Characteristics of the raindrop size distributions and their retrieved polarimetric radar parameters in northern and southern China. Atmospheric Research, 135−136, 59−75,
Wang, H., F. Y. Kong, Y. Jung, N. G. Wu, and J. F. Yin, 2018a: Quality control of S-band polarimetric radar measurements for data assimilation. Journal of Applied Meteorological Science, 29, 546−558, https://doi.org/10.11898/1001-7313.20180504. (in Chinese with English abstract
Wang, H., F. Y. Kong, N. G. Wu, H. P. Lan, and J. F. Yin, 2019: An investigation into microphysical structure of a squall line in South China observed with a polarimetric radar and a disdrometer. Atmospheric Research, 226, 171−180, https://doi.org/10.1016/j.atmosres.2019.04.009.
Wang, M. J., K. Zhao, W. C. Lee, and F. Q. Zhang, 2018b: Microphysical and kinematic structure of convective-scale elements in the Inner Rainband of Typhoon Matmo (2014) after landfall. J. Geophys. Res.: Atmos., 123, 6549−6564, https://doi.org/10.1029/2018JD028578.
Wang, M. J., K. Zhao, Y. J. Pan, and M. Xue, 2020: Evaluation of simulated drop size distributions and microphysical processes using polarimetric radar observations for landfalling typhoon Matmo (2014). J. Geophys. Res.: Atmos., 125, e2019JD031527, https://doi.org/10.1029/2019JD031527.
Wang, M. J., K. Zhao, M. Xue, G. F. Zhang, S. Liu, L. Wen, and G. Chen, 2016: Precipitation microphysics characteristics of a Typhoon Matmo (2014) rainband after landfall over eastern China based on polarimetric radar observations. J. Geophys. Res.: Atmos., 121, 12 415−12 433,
Weatherford, C. L., and W. M. Gray, 1988: Typhoon structure as revealed by aircraft reconnaissance. Part I: Data analysis and climatology. Mon. Wea. Rev., 116, 1032−1043, https://doi.org/10.1175/1520-0493(1988)116<1032:TSARBA>2.0.CO;2.
Wen, G. H., C. X. Liu, X. Y. Bi, and H. J. Huang, 2017b: A composite study of rainfall asymmetry of tropical cyclones after making landfall in Guangdong province. Journal of Tropical Meteorology, 23, 417−425, https://doi.org/10.16555/j.1006-8775.2017.04.007.
Wen, J., and Coauthors, 2017a: Evolution of microphysical structure of a subtropical squall line observed by a polarimetric radar and a disdrometer during OPACC in Eastern China. J. Geophys. Res.: Atmos., 122, 8033−8050, https://doi.org/10.1002/2016JD026346.
Wu, C., L. P. Liu, M. Wei, B. Z. Xi, and M. H. Yu, 2018a: Statistics-based optimization of the polarimetric radar hydrometeor classification algorithm and its application for a squall line in South China. Adv. Atmos. Sci., 35, 296−316, https://doi.org/10.1007/s00376-017-6241-0.
Wu, D., F. Q. Zhang, X. M. Chen, A. Ryzhkov, K. Zhao, M. R. Kumjian, X. C. Chen, and P. W. Chan, 2021a: Evaluation of microphysics schemes in tropical cyclones using polarimetric radar observations: Convective precipitation in an outer rainband. Mon. Wea. Rev., 149, 1055−1068, https://doi.org/10.1175/MWR-D-19-0378.1.
Wu, D., and Coauthors, 2018b: Kinematics and microphysics of convection in the outer rainband of typhoon Nida (2016) revealed by polarimetric radar. Mon. Wea. Rev., 146, 2147−2159, https://doi.org/10.1175/MWR-D-17-0320.1.
Wu, Z. H., Y. B. Huang, Y. Zhang, L. F. Zhang, H. C. Lei, and H. P. Zheng, 2021b: Precipitation characteristics of typhoon Lekima (2019) at landfall revealed by joint observations from GPM satellite and S-band radar. Atmospheric Research, 260, 105714, https://doi.org/10.1016/j.atmosres.2021.105714.
Xia, Q. L., W. J. Zhang, H. N. Chen, W. C. Lee, L. Han, Y. Ma, and X. T. Liu, 2020: Quantification of precipitation using polarimetric radar measurements during several typhoon events in southern China. Remote Sensing, 12, 2058, https://doi.org/10.3390/rs12122058.
Xu, W. X., H. Y. Jiang, and X. B. Kang, 2014: Rainfall asymmetries of tropical cyclones prior to, during, and after making landfall in South China and Southeast United States. Atmospheric Research, 139, 18−26, https://doi.org/10.1016/j.atmosres.2013.12.015.
Yu, Z. F., Y. Q. Wang, and H. M. Xu, 2015: Observed rainfall asymmetry in tropical cyclones making landfall over China. J. Appl. Meteorol. Climatol., 54, 117−136, https://doi.org/10.1175/JAMC-D-13-0359.1.
Zhang, A. Q., Y. L. Chen, X. Pan, Y. Y. Hu, S. M. Chen, and W. B. Li, 2022: Precipitation microphysics of tropical cyclones over Northeast China in 2020. Remote Sensing, 14, 2188, https://doi.org/10.3390/rs14092188.
Zhang, W. J., Y. J. Zhang, D. Zheng, and X. J. Zhou, 2012: Lightning distribution and eyewall outbreaks in tropical cyclones during landfall. Mon. Wea. Rev., 140, 3573−3586, https://doi.org/10.1175/MWR-D-11-00347.1.
Zhang, Y. H., and Coauthors, 2021: Deep learning for polarimetric radar quantitative precipitation estimation during landfalling typhoons in South China. Remote Sensing, 13, 3157, https://doi.org/10.3390/rs13163157.
Zheng, H. P., Y. Zhang, L. F. Zhang, H. C. Lei, and Z. H. Wu, 2021: Precipitation microphysical processes in the inner rainband of tropical cyclone Kajiki (2019) over the South China Sea revealed by polarimetric radar. Adv. Atmos. Sci., 38, 65−80, https://doi.org/10.1007/s00376-020-0179-3.
Zrnić, D. S., and A. V. Ryzhkov, 1999: Polarimetry for weather surveillance radars. Bull. Amer. Meteor. Soc., 80, 389−406, https://doi.org/10.1175/1520-0477(1999)080<0389:PFWSR>2.0.CO;2.