Bisht, J. S. H., and Coauthors, 2021: Seasonal variations of SF6, CO2, CH4, and N2O in the UT/LS region due to emissions, transport, and chemistry. J. Geophys. Res., 126(4), e2020JD033541, https://doi.org/10.1029/2020JD033541.
Bloom, A. A., P. I. Palmer, A. Fraser, D. S. Reay, and C. Frankenberg, 2010: Large-scale controls of methanogenesis inferred from methane and gravity spaceborne data. Science, 327, 322−325, https://doi.org/10.1126/science.1175176.
Bloom, A. A., and Coauthors, 2017: A global wetland methane emissions and uncertainty dataset for atmospheric chemical transport models (WetCHARTs version 1.0). Geoscientific Model Development, 10, 2141−2156, https://doi.org/10.5194/gmd-10-2141-2017.
Bosilovich, M. G., R. Lucchesi, and M. Suarez, 2016: MERRA-2: File specification. GMAO Office Note No.9 (Version 1.1), 73 pp.
Bousquet, P., and Coauthors, 2006: Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature, 443, 439−443, https://doi.org/10.1038/nature05132.
Bousserez, N., D. K. Henze, B. Rooney, A. Perkins, K. J. Wecht, A. J. Turner, V. Natraj, and J. R. Worden, 2016: Constraints on methane emissions in North America from future geostationary remote-sensing measurements. Atmospheric Chemistry and Physics, 16, 6175−6190, https://doi.org/10.5194/acp-16-6175-2016.
Brasseur, G. P., and D. J. Jacob, 2017: Modeling of Atmospheric Chemistry. Cambridge University Press.
Canadell, J. G., and Coauthors, 2021: Global carbon and other biogeochemical cycles and feedbacks. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, V. Masson-Delmotte et al., Eds., Cambridge University Press.
Chandra, N., S. Hayashida, T. Saeki, and P. K. Patra, 2017: What controls the seasonal cycle of columnar methane observed by GOSAT over different regions in India? Atmospheric Chemistry and Physics, 17(20), 12 633−12 643,
Chandra, N., and Coauthors, 2021: Emissions from the oil and gas sectors, coal mining and ruminant farming drive methane growth over the past three decades. J. Meteor. Soc. Japan., 99(2), 309−337, https://doi.org/10.2151/jmsj.2021-015.
Darmenov, A., and da Silva, A. M., 2013: The quick fire emissions dataset (QFED)—Documentation of versions 2.1, 2.2 and 2.4. NASA Tech. Rep. Series on Global Modeling and Data Assimilation, NASA TM-2013-104606.
Etiope, G., 2015: Natural Gas Seepage: The Earth’s Hydrocarbon Degassing. Springer.
Etminan, M., G. Myhre, E. J. Highwood, and K. P. Shine, 2016: Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing. Geophys. Res. Lett., 43, 12 614−12 623,
Feng, L., P. I. Palmer, H. Bösch, and S. Dance, 2009: Estimating surface CO2 fluxes from space-borne CO2 dry air mole fraction observations using an ensemble Kalman Filter. Atmospheric Chemistry and Physics, 9(8), 2619−2633, https://doi.org/10.5194/acp-9-2619-2009.
Feng, L., and Coauthors, 2017: Consistent regional fluxes of CH4 and CO2 inferred from GOSAT proxy XCH4: XCO2 retrievals, 2010–2014. Atmospheric Chemistry and Physics, 17, 4781−4797, https://doi.org/10.5194/acp-17-4781-2017.
Frankenberg, C., I. Aben, P. Bergamaschi, E. J. Dlugokencky, R. van Hees, S. Houweling, P. van der Meer, R. Snel, and P. Tol, 2011: Global column-averaged methane mixing ratios from 2003 to 2009 as derived from SCIAMACHY: Trends and variability. J. Geophys. Res., 116, D04302, https://doi.org/10.1029/2010JD014849.
Fraser, A., and Coauthors, 2013: Estimating regional methane surface fluxes: The relative importance of surface and GOSAT mole fraction measurements. Atmospheric Chemistry and Physics, 13, 5697−5713, https://doi.org/10.5194/acp-13-5697-2013.
Fraser, A., P. I. Palmer, L. Feng, H. Bösch, R. Parker, E. J. Dlugokencky, P. B. Krummel, and R. L. Langenfelds, 2014: Estimating regional fluxes of CO2 and CH4 using space-borne observations of XCH4:XCO2. Atmospheric Chemistry and Physics, 14, 12 883−12 895,
Fung, I., J. John, J. Lerner, E. Matthews, M. Prather, L. P. Steele, and P. J. Fraser, 1991: Three-dimensional model synthesis of the global methane cycle. J. Geophys. Res., 96, 13 033−13 065,
Ganesan, A. L., and Coauthors, 2019: Advancing scientific understanding of the global methane budget in support of the Paris Agreement. Global Biogeochemical Cycles, 33, 1475−1512, https://doi.org/10.1029/2018GB006065.
Gao, J. L., C. H. Guan, and B. Zhang, 2020: China’s CH4 emissions from coal mining: A review of current bottom-up inventories. Science of the Total Environment, 725, 138295, https://doi.org/10.1016/j.scitotenv.2020.138295.
Gao, J. L., C. H. Guan, B. Zhang, and K. Li, 2021: Decreasing methane emissions from China’s coal mining with rebounded coal production. Environmental Research Letters, 16(12), 124037, https://doi.org/10.1088/1748-9326/ac38d8.
Gurney, K. R., and Coauthors, 2002: Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature, 415(6872), 626−630, https://doi.org/10.1038/415626a.
Huang, Y. X., V. Natraj, Z.-C. Zeng, P. Kopparla, and Y. L. Yung, 2020: Quantifying the impact of aerosol scattering on the retrieval of methane from airborne remote sensing measurements. Atmospheric Measurement Techniques, 13(12), 6755−6769, https://doi.org/10.5194/amt-13-6755-2020.
Jacob, D. J., and Coauthors, 2016: Satellite observations of atmospheric methane and their value for quantifying methane emissions. Atmospheric Chemistry and Physics, 16, 14 371−14 396,
Janardanan, R., and Coauthors, 2020: Country-scale analysis of methane emissions with a high-resolution inverse model using GOSAT and surface observations. Remote Sensing, 12(3), 375, https://doi.org/10.3390/rs12030375.
Janssens-Maenhout, G., and Coauthors, 2019: EDGAR v4.3.2 global atlas of the three major greenhouse gas emissions for the period 1970–2012. Earth System Science Data, 11, 959−1002, https://doi.org/10.5194/essd-11-959-2019.
Karion, A., C. Sweeney, P. Tans, and T. Newberger, 2010: AirCore: An innovative atmospheric sampling system. J. Atmos. Oceanic Technol., 27, 1839−1853, https://doi.org/10.1175/2010JTECHA1448.1.
Kirschke, S., and Coauthors, 2013: Three decades of global methane sources and sinks. Nature Geoscience, 6, 813−823, https://doi.org/10.1038/ngeo1955.
Kvenvolden, K. A., and B. W. Rogers, 2005: Gaia’s breath—global methane exhalations. Marine and Petroleum Geology, 22, 579−590, https://doi.org/10.1016/j.marpetgeo.2004.08.004.
Lin, J.-T., and M. B. McElroy, 2010: Impacts of boundary layer mixing on pollutant vertical profiles in the lower troposphere: Implications to satellite remote sensing. Atmos. Environ., 44, 1726−1739, https://doi.org/10.1016/j.atmosenv.2010.02.009.
Lin, X. H., W. Zhang, M. Crippa, S. S. Peng, P. F. Han, N. Zeng, L. J. Yu, and G. C. Wang, 2021: A comparative study of anthropogenic CH4 emissions over China based on the ensembles of bottom-up inventories. Earth System Science Data, 13(3), 1073−1088, https://doi.org/10.5194/essd-13-1073-2021.
Locatelli, R., and Coauthors, 2013: Impact of transport model errors on the global and regional methane emissions estimated by inverse modelling. Atmospheric Chemistry and Physics, 13(19), 9917−9937, https://doi.org/10.5194/acp-13-9917-2013.
Locatelli, R., P. Bousquet, M. Saunois, F. Chevallier, and C. Cressot, 2015: Sensitivity of the recent methane budget to LMDz sub-grid-scale physical parameterizations. Atmospheric Chemistry and Physics, 15, 9765−9780, https://doi.org/10.5194/acp-15-9765-2015.
Lu, X., and Coauthors, 2021: Global methane budget and trend, 2010–2017: Complementarity of inverse analyses using in situ (GLOBALVIEWplus CH4 ObsPack) and satellite (GOSAT) observations. Atmospheric Chemistry and Physics, 21, 4637−4657, https://doi.org/10.5194/acp-21-4637-2021.
Lunt, M. F., P. I. Palmer, L. Feng, C. M. Taylor, H. Boesch, and R. J. Parker, 2019: An increase in methane emissions from tropical Africa between 2010 and 2016 inferred from satellite data. Atmospheric Chemistry and Physics, 19, 14 721−14 740,
Lunt, M. F., P. I. Palmer, A. Lorente, T. Borsdorff, J. Landgraf, R. J. Parker, and H. Boesch, 2021: Rain-fed pulses of methane from East Africa during 2018–2019 contributed to atmospheric growth rate. Environmental Research Letters, 16(2), 024021, https://doi.org/10.1088/1748-9326/abd8fa.
Lyon, D. R., and Coauthors, 2015: Constructing a spatially resolved methane emission inventory for the Barnett Shale region. Environ. Sci. Technol., 49, 8147−8157, https://doi.org/10.1021/es506359c.
Maasakkers, J. D., and Coauthors, 2016: Gridded national inventory of U.S. methane emissions. Environ. Sci. Technol., 50, 13 123−13 133,
Maasakkers, J. D., and Coauthors, 2019: Global distribution of methane emissions, emission trends, and OH concentrations and trends inferred from an inversion of GOSAT satellite data for 2010–2015. Atmospheric Chemistry and Physics, 19, 7859−7881, https://doi.org/10.5194/acp-19-7859-2019.
Meirink, J. F., P. Bergamaschi, and M. C. Krol, 2008: Four-dimensional variational data assimilation for inverse modelling of atmospheric methane emissions: Method and comparison with synthesis inversion. Atmospheric Chemistry and Physics, 8, 6341−6353, https://doi.org/10.5194/acp-8-6341-2008.
Melton, J. R., and Coauthors, 2013: Present state of global wetland extent and wetland methane modelling: Conclusions from a model inter-comparison project (WETCHIMP). Biogeosciences, 10, 753−788, https://doi.org/10.5194/bg-10-753-2013.
Miller, S. M., A. M. Michalak, R. G. Detmers, O. P. Hasekamp, L. M. P. Bruhwiler, and S. Schwietzke, 2019: China’s coal mine methane regulations have not curbed growing emissions. Nature Communications, 10, 303, https://doi.org/10.1038/s41467-018-07891-7.
Murray, L. T., D. J. Jacob, J. A. Logan, R. C. Hudman, and W. J. Koshak, 2012: Optimized regional and interannual variability of lightning in a global chemical transport model constrained by LIS/OTD satellite data. J. Geophys. Res., 117, D20307, https://doi.org/10.1029/2012JD017934.
Myhre, G., and Coauthors, 2013: Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmospheric Chemistry and Physics, 13, 1853−1877, https://doi.org/10.5194/acp-13-1853-2013.
Pandey, S., and Coauthors, 2019: Influence of atmospheric transport on estimates of variability in the global methane burden. Geophys. Res. Lett., 46(4), 2302−2311, https://doi.org/10.1029/2018GL081092.
Parker, R., and Coauthors, 2011: Methane observations from the Greenhouse Gases Observing SATellite: Comparison to ground-based TCCON data and model calculations. Geophys. Res. Lett., 38(15), L15807, https://doi.org/10.1029/2011GL047871.
Parker, R. J., and Coauthors, 2015: Assessing 5 years of GOSAT Proxy XCH4 data and associated uncertainties. Atmospheric Measurement Techniques, 8(11), 4785−4801, https://doi.org/10.5194/amt-8-4785-2015.
Parker, R. J., and Coauthors, 2020: A decade of GOSAT proxy satellite CH4 observations. Earth System Science Data Discussions, 2020, 1−36, https://doi.org/10.5194/essd-2020-114.
Parker R J, and Coauthors., 2020: A decade of GOSAT Proxy satellite CH 4 observations. Earth System Science Data, 12(4), 3383−3412, https://doi.org/10.5194/essd-12-3383-2020.
Patra, P. K., and Coauthors, 2011: TransCom model simulations of CH4 and related species: Linking transport, surface flux and chemical loss with CH4 variability in the troposphere and lower stratosphere. Atmospheric Chemistry and Physics, 11, 12 813−12 837,
Prather, M. J., C. D. Holmes, and J. Hsu, 2012: Reactive greenhouse gas scenarios: Systematic exploration of uncertainties and the role of atmospheric chemistry. Geophys. Res. Lett., 39(9), L09803, https://doi.org/10.1029/2012gl051440.
Ridgwell, A. J., S. J. Marshall, and K. Gregson, 1999: Consumption of atmospheric methane by soils: A process-based model. Global Biogeochemical Cycles, 13, 59−70, https://doi.org/10.1029/1998GB900004.
Saito, R., and Coauthors, 2013: TransCom model simulations of methane: Comparison of vertical profiles with aircraft measurements. J. Geophys. Res., 118, 3891−3904, https://doi.org/10.1002/jgrd.50380.
Saunois, M., and Coauthors, 2020: The global methane budget: 2000–2017. Earth System Science Data, 12(3), 1561−1623, https://doi.org/10.5194/essd-12-1561-2020.
Schaefer, H., 2019: On the causes and consequences of recent trends in atmospheric methane. Current Climate Change Reports, 5, 259−274, https://doi.org/10.1007/s40641-019-00140-z.
Schaefer, H., and Coauthors, 2016: A 21st-century shift from fossil-fuel to biogenic methane emissions indicated by 13CH4. Science, 352, 80−84, https://doi.org/10.1126/science.aad2705.
Sheng, J.-X., D. J. Jacob, J. D. Maasakkers, M. P. Sulprizio, D. Zavala-Araiza, and S. P. Hamburg, 2017: A high-resolution (0.1°×0.1°) inventory of methane emissions from Canadian and Mexican oil and gas systems. Atmos. Environ., 158, 211−215, https://doi.org/10.1016/j.atmosenv.2017.02.036.
Sheng, J. X., S. J. Song, Y. Z. Zhang, R. G. Prinn, and G. Janssens-Maenhout, 2019: Bottom-up estimates of coal mine methane emissions in China: A gridded inventory, emission factors, and trends. Environmental Science & Technology Letters, 6(8), 473−478, https://doi.org/10.1021/acs.estlett.9b00294.
Sheng, J. X., and Coauthors, 2021: Sustained methane emissions from China after 2012 despite declining coal production and rice-cultivated area. Environmental Research Letters, 16(10), 104018, https://doi.org/10.1088/1748-9326/ac24d1.
Sherwen, T., and Coauthors, 2016: Global impacts of tropospheric halogens (Cl, Br, I) on oxidants and composition in GEOS-Chem. Atmospheric Chemistry and Physics, 16(18), 12 239−12 271,
Shindell, D., and Coauthors, 2012: Simultaneously mitigating near-term climate change and improving human health and food security. Science, 335, 183−189, https://doi.org/10.1126/science.1210026.
Stanevich, I., and Coauthors, 2020: Characterizing model errors in chemical transport modeling of methane: Impact of model resolution in versions v9-02 of GEOS-Chem and v35j of its adjoint model. Geoscientific Model Development, 13, 3839−3862, https://doi.org/10.5194/gmd-13-3839-2020.
Stanevich, I., and Coauthors, 2021: Characterizing model errors in chemical transport modeling of methane: Using GOSAT XCH4 data with weak-constraint four-dimensional variational data assimilation. Atmospheric Chemistry and Physics, 21, 9545−9572, https://doi.org/10.5194/acp-21-9545-2021.
Stavert, A. R., and Coauthors, 2022: Regional trends and drivers of the global methane budget. Global Change Biology, 28(1), 182−200, https://doi.org/10.1111/gcb.15901.
Strahan, S. E., and B. C. Polansky, 2006: Meteorological implementation issues in chemistry and transport models. Atmospheric Chemistry and Physics, 6(10), 2895−2910, https://doi.org/10.5194/acp-6-2895-2006.
Turner, A. J., and Coauthors, 2015: Estimating global and North American methane emissions with high spatial resolution using GOSAT satellite data. Atmospheric Chemistry and Physics, 15, 7049−7069, https://doi.org/10.5194/acp-15-7049-2015.
Turner, A. J., D. J. Jacob, J. Benmergui, J. Brandman, L. White, and C. A. Randles, 2018: Assessing the capability of different satellite observing configurations to resolve the distribution of methane emissions at kilometer scales. Atmospheric Chemistry and Physics, 18, 8265−8278, https://doi.org/10.5194/acp-18-8265-2018.
Webb, A. J., and Coauthors, 2016: CH4 concentrations over the Amazon from GOSAT consistent with in situ vertical profile data. J. Geophys. Res., 121, 11 006−11 020,
Wecht, K. J., D. J. Jacob, M. P. Sulprizio, G. W. Santoni, S. C. Wofsy, R. Parker, H. Bösch, and J. Worden, 2014: Spatially resolving methane emissions in California: Constraints from the CalNex aircraft campaign and from present (GOSAT, TES) and future (TROPOMI, geostationary) satellite observations. Atmospheric Chemistry and Physics, 14, 8173−8184, https://doi.org/10.5194/acp-14-8173-2014.
Wunch, D., and Coauthors, 2011: The total carbon column observing network. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369, 2087−2112, https://doi.org/10.1098/rsta.2010.0240.
Yin, Y., and Coauthors, 2021: Accelerating methane growth rate from 2010 to 2017: Leading contributions from the tropics and East Asia. Atmospheric Chemistry and Physics, 21(16), 12 631−12 647,
Yu, K. R., C. A. Keller, D. J. Jacob, A. M. Molod, S. D. Eastham, and M. S. Long, 2018: Errors and improvements in the use of archived meteorological data for chemical transport modeling: An analysis using GEOS-Chem v11-01 driven by GEOS-5 meteorology. Geoscientific Model Development, 11(1), 305−319, https://doi.org/10.5194/gmd-11-305-2018.
Zhang, Y. Z., D. J. Jacob, J. D. Maasakkers, M. P. Sulprizio, J.-X. Sheng, R. Gautam, and J. Worden, 2018: Monitoring global tropospheric OH concentrations using satellite observations of atmospheric methane. Atmospheric Chemistry and Physics, 18, 15 959−15 973,
Zhang, Y. Z., and Coauthors, 2021: Attribution of the accelerating increase in atmospheric methane during 2010–2018 by inverse analysis of GOSAT observations. Atmospheric Chemistry and Physics, 21, 3643−3666, https://doi.org/10.5194/acp-21-3643-2021.
Zhao Y. H., and Coauthors, 2020: Influences of hydroxyl radicals (OH) on top-down estimates of the global and regional methane budgets. Atmospheric Chemistry and Physics, 20(15), 9525−9546, https://doi.org/10.5194/acp-20-9525-2020.