Altmann, A., L. Toloşi, O. Sander, and T. Lengauer, 2010: Permutation importance: A corrected feature importance measure. Bioinformatics, 26, 1340−1347, https://doi.org/10.1093/bioinformatics/btq134.
An, Z. S., and Coauthors, 2019: Severe haze in northern China: A synergy of anthropogenic emissions and atmospheric processes. Proceedings of the National Academy of Sciences of the United States of America, 116, 8657−8666, https://doi.org/10.1073/pnas.1900125116.
Appel, B. R., Y. Tokiwa, J. Hsu, E. L. Kothny, and E. Hahn, 1985: Visibility as related to atmospheric aerosol constituents. Atmos. Environ., 19, 1525−1534, https://doi.org/10.1016/0004-6981(85)90290-2.
Arimoto, R., and Coauthors, 1996: Relationships among aerosol constituents from Asia and the North Pacific during PEM-West A. J. Geophys. Res., 101, 2011−2023, https://doi.org/10.1029/95JD01071.
Bae, M. S., K. L. Demerjian, and J. J. Schwab, 2006: Seasonal estimation of organic mass to organic carbon in PM2.5 at rural and urban locations in New York state. Atmos. Environ., 40, 7467−7479, https://doi.org/10.1016/j.atmosenv.2006.07.008.
Bai, K. X., N.-B. Chang, J. Y. Zhou, W. Gao, and J. P. Guo, 2019a: Diagnosing atmospheric stability effects on the modeling accuracy of PM2.5/AOD relationship in eastern China using radiosonde data. Environmental Pollution, 251, 380−389, https://doi.org/10.1016/j.envpol.2019.04.104.
Bai, K. X., K. Li, N.-B. Chang, and W. Gao, 2019b: Advancing the prediction accuracy of satellite-based PM2.5 concentration mapping: A perspective of data mining through in situ PM2.5 measurements. Environmental Pollution, 254, 113047, https://doi.org/10.1016/j.envpol.2019.113047.
Burnett, R., and Coauthors, 2018: Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proceedings of the National Academy of Sciences of the United States of America, 115, 9592−9597, https://doi.org/10.1073/pnas.1803222115.
Charlson, R. J., 1969: Atmospheric visibility related to aerosol mass concentration: Review. Environ. Sci. Technol., 3, 913−918, https://doi.org/10.1021/es60033a002.
Chen, G. B., and Coauthors, 2018: Spatiotemporal variation of PM1 pollution in China. Atmos. Environ., 178, 198−205, https://doi.org/10.1016/j.atmosenv.2018.01.053.
Chow, J. C., J. G. Watson, L. W. A. Chen, W. P. Arnott, H. Moosmüller, and K. Fung, 2004: Equivalence of elemental carbon by thermal/optical reflectance and transmittance with different temperature protocols. Environ. Sci. Technol., 38, 4414−4422, https://doi.org/10.1021/es034936u.
Chow, J. C., J. G. Watson, D. H. Lowenthal, and K. L. Magliano, 2005: 2005: Loss of PM2.5 nitrate from filter samples in central California. Journal of the Air & Waste Management Association, 55, 1158−1168, https://doi.org/10.1080/10473289.2005.10464704.
Chow, J. C., J. G. Watson, L. W. A. Chen, M. C. O. Chang, N. F. Robinson, D. Trimble, and S. Kohl, 2007: The IMPROVE_A temperature protocol for thermal/optical carbon analysis: Maintaining consistency with a long-term database. Journal of the Air & Waste Management Association, 57, 1014−1023, https://doi.org/10.3155/1047-3289.57.9.1014.
Dang, R. J., and H. Liao, 2019: Severe winter haze days in the Beijing−Tianjin−Hebei region from 1985 to 2017 and the roles of anthropogenic emissions and meteorology. Atmospheric Chemistry and Physics, 19, 10 801−10 816, https://doi.org/10.5194/acp-19-10801-2019.
Ebenstein, A., M. Y. Fan, M. Greenstone, G. J. He, and M. G. Zhou, 2017: New evidence on the impact of sustained exposure to air pollution on life expectancy from China’s Huai River Policy. Proceedings of the National Academy of Sciences of the United States of America, 114, 10 384−10 389, https://doi.org/10.1073/pnas.1616784114.
Gomišček., 2004: Spatial and temporal variations of PM1, PM2.5, PM10 and particle number concentration during the AUPHEP—project. Atmos. Environ., 38, 3917−3934, https://doi.org/10.1016/j.atmosenv.2004.03.056.
Guo, J. P., and Coauthors, 2017: Declining frequency of summertime local-scale precipitation over eastern China from 1970 to 2010 and its potential link to aerosols. Geophys. Res. Lett., 44, 5700−5708, https://doi.org/10.1002/2017GL073533.
Guo, J. P., and Coauthors, 2019: Shift in the temporal trend of boundary layer height in China using long-term (1979−2016) radiosonde data. Geophys. Res. Lett., 46, 6080−6089, https://doi.org/10.1029/2019GL082666.
Guo, S., and Coauthors, 2014: Elucidating severe urban haze formation in China. Proceedings of the National Academy of Sciences of the United States of America, 111, 17 373−17 378, https://doi.org/10.1073/pnas.1419604111.
Ho, T. K., 1998: The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20, 832−844, https://doi.org/10.1109/34.709601.
Holben, B. N., and Coauthors, 1998: AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sensing of Environment, 66, 1−16, https://doi.org/10.1016/S0034-4257(98)00031-5.
Hu, D. W., J. M. Chen, X. N. Ye, L. Li, and X. Yang, 2011: Hygroscopicity and evaporation of ammonium chloride and ammonium nitrate: Relative humidity and size effects on the growth factor. Atmos. Environ., 45, 2349−2355, https://doi.org/10.1016/j.atmosenv.2011.02.024.
Huang, R.-J., and Coauthors, 2014: High secondary aerosol contribution to particulate pollution during haze events in China. Nature, 514, 218−222, https://doi.org/10.1038/nature13774.
Huang, X., and Coauthors, 2020: Enhanced secondary pollution offset reduction of primary emissions during COVID-19 lockdown in China. National Science Review, https://doi.org/10.1093/nsr/nwaa137.
Khan, J. Z., L. Sun, Y. Z. Tian, G. L. Shi, and Y. C. Feng, 2021: Chemical characterization and source apportionment of PM1 and PM2.5 in Tianjin, China: Impacts of biomass burning and primary biogenic sources. Journal of Environmental Sciences, 99, 196−209, https://doi.org/10.1016/j.jes.2020.06.027.
Li, J., and Coauthors, 2014: Comparison of abundances, compositions and sources of elements, inorganic ions and organic compounds in atmospheric aerosols from Xi’an and New Delhi, two megacities in China and India. Sci. Total Environ., 476-477, 485−495, https://doi.org/10.1016/j.scitotenv.2014.01.011.
Li, Z. Q., and Coauthors, 2017: Aerosol and boundary-layer interactions and impact on air quality. National Science Review, 4, 810−833, https://doi.org/10.1093/nsr/nwx117.
Li, Z. Q., and Coauthors, 2019: East Asian study of tropospheric aerosols and their impact on regional clouds, precipitation, and climate (EAST-AIRCPC). J. Geophys. Res., 124, 13 026−13 054, https://doi.org/10.1029/2019JD030758.
Liu, H. J., and Coauthors, 2014: Aerosol hygroscopicity derived from size-segregated chemical composition and its parameterization in the North China Plain. Atmospheric Chemistry and Physics, 14, 2525−2539, https://doi.org/10.5194/acp-14-2525-2014.
Liu, L., J. Guo, Y. C. Miao, L. Liu, J. Li, D. D. Chen, J. He, and C. G. Cui, 2018: Elucidating the relationship between aerosol concentration and summertime boundary layer structure in central China. Environmental Pollution, 241, 646−653, https://doi.org/10.1016/j.envpol.2018.06.008.
Lou, M. Y., and Coauthors, 2019: On the relationship between aerosol and boundary layer height in Summer in China under different thermodynamic conditions. Earth and Space Science, 6, 887−901, https://doi.org/10.1029/2019EA000620.
Miao, Y. C., S. H. Liu, J. P. Guo, S. X. Huang, Y. Yan, and M. Y. Lou, 2018: Unraveling the relationships between boundary layer height and PM2.5 pollution in China based on four-year radiosonde measurements. Environmental Pollution, 243, 1186−1195, https://doi.org/10.1016/j.envpol.2018.09.070.
Pósfai, M., and P. R. Buseck, 2010: Nature and climate effects of individual tropospheric aerosol particles. Annual Review of Earth and Planetary Sciences, 38, 17−43, https://doi.org/10.1146/annurev.earth.031208.100032.
Qiao, T., M. F. Zhao, G. L. Xiu, and J. Z. Yu, 2016: Simultaneous monitoring and compositions analysis of PM1 and PM2.5 in Shanghai: Implications for characterization of haze pollution and source apportionment. Science of the Total Environment, 557−558, 386−394, https://doi.org/10.1016/j.scitotenv.2016.03.095.
Qin, Y. M., and Coauthors, 2017: Impacts of traffic emissions on atmospheric particulate nitrate and organics at a downwind site on the periphery of Guangzhou, China. Atmospheric Chemistry and Physics, 17, 10 245−10 258, https://doi.org/10.5194/acp-17-10245-2017.
Ren, Y. Q., and Coauthors, 2018: Seasonal variation and size distribution of biogenic secondary organic aerosols at urban and continental background sites of China. Journal of Environmental Sciences, 71, 32−44, https://doi.org/10.1016/j.jes.2017.11.016.
Shao, P. Y., and Coauthors, 2018: Characterizing remarkable changes of severe haze events and chemical compositions in multi-size airborne particles (PM1, PM2.5 and PM10) from January 2013 to 2016−2017 winter in Beijing, China. Atmos. Environ., 189, 133−144, https://doi.org/10.1016/j.atmosenv.2018.06.038.
Shi, Y., J. M. Chen, D. W. Hu, L. Wang, X. Yang, and X. M. Wang, 2014: Airborne submicron particulate (PM1) pollution in Shanghai, China: Chemical variability, formation/dissociation of associated semi-volatile components and the impacts on visibility. Science of the Total Environment, 473−474, 199−206, https://doi.org/10.1016/j.scitotenv.2013.12.024.
Sun, Y. L., and Coauthors, 2020: Chemical differences between PM1 and PM2.5 in highly polluted environment and implications in air pollution studies. Geophys. Res. Lett., 47, e2019GL086288, https://doi.org/10.1029/2019GL086288.
Turpin, B. J., and H. J. Lim, 2001: Species contributions to PM2.5 mass concentrations: Revisiting common assumptions for estimating organic mass. Aerosol Science and Technology, 35, 602−610, https://doi.org/10.1080/02786820119445.
Wang, G. H., and Coauthors, 2014: Evolution of aerosol chemistry in Xi’an, inland China, during the dust storm period of 2013—Part 1: Sources, chemical forms and formation mechanisms of nitrate and sulfate. Atmospheric Chemistry and Physics, 14, 11 571−11 585, https://doi.org/10.5194/acp-14-11571-2014.
Wang, G. H., and Coauthors, 2016: Persistent sulfate formation from London Fog to Chinese haze. Proceedings of the National Academy of Sciences of the United States of America, 113, 13 630−13 635, https://doi.org/10.1073/pnas.1616540113.
Wang, G. H., and Coauthors, 2018: Particle acidity and sulfate production during severe haze events in China cannot be reliably inferred by assuming a mixture of inorganic salts. Atmospheric Chemistry and Physics, 18, 10 123−101 32, https://doi.org/10.5194/acp-18-10123-2018.
Wang, J. F., and Coauthors, 2020: Fast sulfate formation from oxidation of SO2 by NO2 and HONO observed in Beijing haze. Nature Communications, 11, 2844, https://doi.org/10.1038/s41467-020-16683-x.
Wang, Y. Y., and Coauthors, 2019: Distinct ultrafine- and accumulation‐mode particle properties in clean and polluted urban environments. Geophys. Res. Lett., 46, 10 918−10 925, https://doi.org/10.1029/2019GL084047.
Wang, Z. B., and Coauthors, 2017: New particle formation in China: Current knowledge and further directions. Science of the Total Environment, 577, 258−266, https://doi.org/10.1016/j.scitotenv.2016.10.177.
WMO, 2001: Strategy for the implementation of the global atmosphere watch programme (2001−2007). GAW Rep. No. 142, WMO TD No. 1077.
Wu, C., and Coauthors, 2020: The characteristics of atmospheric brown carbon in Xi’an, Inland China: Sources, size distributions and optical properties. Atmospheric Chemistry and Physics, 20, 2017−2030, https://doi.org/10.5194/acp-20-2017-2020.
Xin, J. Y., and Coauthors, 2015: The campaign on atmospheric aerosol research network of China: CARE-China. Bull. Amer. Meteor. Soc., 96, 1137−1155, https://doi.org/10.1175/BAMS-D-14-00039.1.
Yang, F., and Coauthors, 2011: Characteristics of PM2.5 speciation in representative megacities and across China. Atmospheric Chemistry and Physics, 11, 5207−5219, https://doi.org/10.5194/acp-11-5207-2011.
Yao, L., and Coauthors, 2018: Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity. Science, 361, 278−281, https://doi.org/10.1126/science.aao4839.
Yao, X. H., C. K. Chan, M. Fang, S. Cadle, T. Chan, P. Mulawa, K. B. He, and B. M. Ye, 2002: The water-soluble ionic composition of PM2.5 in Shanghai and Beijing, China. Atmos. Environ., 36, 4223−4234, https://doi.org/10.1016/S1352-2310(02)00342-4.
Yue, H. B., C. Y. He, Q. X. Huang, D. Yin, and B. A. Bryan, 2020: Stronger policy required to substantially reduce deaths from PM2.5 pollution in China. Nature Communications, 11, 1462, https://doi.org/10.1038/s41467-020-15319-4.
Zamora, M. L., and Coauthors, 2019: Wintertime aerosol properties in Beijing. Atmospheric Chemistry and Physics, 19, 14 329−14 338, https://doi.org/10.5194/acp-19-14329-2019.
Zhang, X. Y., 2014: Characteristics of the chemical components of aerosol particles in the various regions over China. Acta Meteorologica Sinica, 72, 1108−1117, https://doi.org/10.11676/qxxb2014.092. (in Chinese with English abstract
Zhang, Y. J., and Coauthors, 2018: Evidence of major secondary organic aerosol contribution to lensing effect black carbon absorption enhancement. npj Climate and Atmospheric Science, 1, 47, https://doi.org/10.1038/s41612-018-0056-2.
Zhao, F. C., and Coauthors, 2020: Aerosol characteristics and impacts on weather and climate over the Tibetan Plateau. National Science Review, 7, 492−495, https://doi.org/10.1093/nsr/nwz184.
Zheng, C. W., and Coauthors, 2017: Analysis of influential factors for the relationship between PM2.5 and AOD in Beijing. Atmospheric Chemistry and Physics, 17, 13 473−13 489, https://doi.org/10.5194/acp-17-13473-2017.
Zhu, X. W., and Coauthors, 2018: Mixing layer height on the North China Plain and meteorological evidence of serious air pollution in southern Hebei. Atmospheric Chemistry and Physics, 18, 4897−4910, https://doi.org/10.5194/acp-18-4897-2018.
Zou, B., J. W. You, Y. Lin, X. L. Duan, X. G. Zhao, X. Fang, M. J. Campen, and S. X. Li, 2019: Air pollution intervention and life-saving effect in China. Environment International, 125, 529−541, https://doi.org/10.1016/j.envint.2018.10.045.