Bell, B., and Coauthors, 2020: ERA5 monthly averaged data on pressure levels from 1950 to 1978 (preliminary version). Copernicus Climate Change Service (C3S) Climate Data Store (CDS). Available from https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels-monthly-means-preliminary-back-extension?tab=overview
Bett, P. E., and Coauthors, 2018: Seasonal forecasts of the summer 2016 Yangtze River Basin rainfall. Adv. Atmos. Sci., 35(8), 918−926, https://doi.org/10.1007/s00376-018-7210-y.
Bett, P. E., and Coauthors, 2020: Seasonal rainfall forecasts for the Yangtze River Basin of China in summer 2019 from an improved climate service. Journal of Meteorological Research, 34(5), 904−916, https://doi.org/10.1007/s13351-020-0049-z.
Bett, P. E., G. M. Martin, N. Dunstone, A. A. Scaife, H. E. Thornton, and C. F. Li, 2021: Seasonal rainfall forecasts for the Yangtze River Basin in the extreme summer of 2020. Adv. Atmos. Sci., 38(12), 2212−2220, https://doi.org/10.1007/s00376-021-1087-x.
Bett, P. E., H. E. Thornton, A. Troccoli, M. De Felice, E. Suckling, L. Dubus, Y.-M. Saint-Drenan, and D. J. Brayshaw, 2022: A simplified seasonal forecasting strategy, applied to wind and solar power in Europe. Climate Services, 27, 100318, https://doi.org/10.1016/J.CLISER.2022.100318.
Bowler, N. E., A. Arribas, S. E. Beare, K. R. Mylne, and G. J. Shutts, 2009: The local ETKF and SKEB: Upgrades to the MOGREPS short-range ensemble prediction system. Quart. J. Roy. Meteor. Soc., 135(640), 767−776, https://doi.org/10.1002/qj.394.
Cassou, C., Y. Kushnir, E. Hawkins, A. Pirani, F. Kucharski, I.-S. Kang, and N. Caltabiano, 2018: Decadal climate variability and predictability: Challenges and opportunities. Bull. Amer. Meteor. Soc., 99(3), 479−490, https://doi.org/10.1175/BAMS-D-16-0286.1.
Dunstone, N., D. Smith, A. Scaife, L. Hermanson, R. Eade, N. Robinson, M. Andrews, and J. Knight, 2016: Skilful predictions of the winter North Atlantic Oscillation one year ahead. Nature Geoscience, 9(11), 809−814, https://doi.org/10.1038/ngeo2824.
Dunstone, N., and Coauthors, 2018: Skilful seasonal predictions of summer European rainfall. Geophys. Res. Lett., 45, 3246−3254, https://doi.org/10.1002/2017gl076337.
Dunstone, N., and Coauthors, 2020: Skilful interannual climate prediction from two large initialised model ensembles. Environmental Research Letters, 15(9), 094083, https://doi.org/10.1088/1748-9326/ab9f7d.
Dunstone, N., and Coauthors, 2022: Towards useful decadal climate services. Bull. Amer. Meteor. Soc., 103(7), E1705−E1719, https://doi.org/10.1175/BAMS-D-21-0190.1.
Golding, N., C. Hewitt, and P. Q. Zhang, 2017a: Effective engagement for climate services: Methods in practice in China. Climate Services, 8, 72−76, https://doi.org/10.1016/j.cliser.2017.11.002.
Golding, N., C. Hewitt, P. Q. Zhang, P. Bett, X. Y. Fang, H. Z. Hu, and S. Nobert, 2017b: Improving user engagement and uptake of climate services in China. Climate Services, 5, 39−45, https://doi.org/10.1016/j.cliser.2017.03.004.
Golding, N., C. Hewitt, P. Q. Zhang, M. Liu, J. Zhang, and P. Bett, 2019: Co-development of a seasonal rainfall forecast service: Supporting flood risk management for the Yangtze River basin. Climate Risk Management, 23, 43−49, https://doi.org/10.1016/j.crm.2019.01.002.
Han, J. P., and R. H. Zhang, 2022: Influence of preceding North Atlantic Oscillation on the spring precipitation in the middle and lower reaches of the Yangtze River valley. International Journal of Climatology, 42(9), 4728−4739, https://doi.org/10.1002/joc.7500.
Hersbach, H., 2000: Decomposition of the continuous ranked probability score for ensemble prediction systems. Wea. Forecasting, 15(5), 559−570, https://doi.org/10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2.
Hersbach, H., and Coauthors, 2019: ERA5 monthly averaged data on pressure levels from 1959 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). Available from https://doi.org/10.24381/cds.6860a573.
Hou, Z. L., J. P. Li, R. Q. Ding, and J. Feng, 2022: Investigating decadal variations of the seasonal predictability limit of sea surface temperature in the tropical Pacific. Climate Dyn., 59(3−4), 1079−1096, https://doi.org/10.1007/s00382-022-06179-3.
Li, C. F., R. Y. Lu, and B. W. Dong, 2016: Interdecadal changes on the seasonal prediction of the western North Pacific summer climate around the late 1970s and early 1990s. Climate Dyn., 46(7−8), 2435−2448, https://doi.org/10.1007/s00382-015-2711-1.
Li, C. F., R. Y. Lu, N. Dunstone, A. A. Scaife, P. E. Bett, and F. Zheng, 2021: The seasonal prediction of the exceptional Yangtze River rainfall in summer 2020. Adv. Atmos. Sci., 38, 2055−2066, https://doi.org/10.1007/s00376-021-1092-0.
Linderholm, H. W., T. H. Ou, J.-H. Jeong, C. K. Folland, D. Y. Gong, H. B. Liu, Y. Liu, and D. L. Chen, 2011: Interannual teleconnections between the summer North Atlantic Oscillation and the East Asian summer monsoon. J. Geophys. Res., 116(D13), D13107, https://doi.org/10.1029/2010JD015235.
Liu, Y., H.-L. Ren, A. A. Scaife, and C. F. Li, 2018: Evaluation and statistical downscaling of East Asian summer monsoon forecasting in BCC and MOHC seasonal prediction systems. Quart. J. Roy. Meteor. Soc., 144(717), 2798−2811, https://doi.org/10.1002/qj.3405.
Liu, Y., H.-L. Ren, N. P. Klingaman, J. P. Liu, and P. Q. Zhang, 2021: Improving long-lead seasonal forecasts of precipitation over Southern China based on statistical downscaling using BCC_CSM1.1m. Dyn. Atmos. Oceans, 94, 101222, https://doi.org/10.1016/j.dynatmoce.2021.101222.
Lu, R.-Y., C.-F. Li, S. H. Yang, and B. W. Dong, 2012: The coupled model predictability of the Western North Pacific summer monsoon with different leading times. Atmos. Ocean. Sci. Lett., 5(3), 219−224, https://doi.org/10.1080/16742834.2012.11447000.
MacLachlan, C., and Coauthors, 2015: Global Seasonal forecast system version 5 (GloSea5): A high-resolution seasonal forecast system. Quart. J. Roy. Meteor. Soc., 141(689), 1072−1084, https://doi.org/10.1002/qj.2396.
Martin, G. M., N. J. Dunstone, A. A. Scaife, and P. E. Bett, 2020: Predicting June mean rainfall in the middle/lower Yangtze River Basin. Adv. Atmos. Sci., 37(1), 29−41, https://doi.org/10.1007/s00376-019-9051-8.
Meehl, G. A., and Coauthors, 2021: Initialized Earth System prediction from subseasonal to decadal timescales. Nature Reviews Earth & Environment., 2, 340−357, https://doi.org/10.1038/s43017-021-00155-x.
Merryfield, W. J., and Coauthors, 2020: Current and emerging developments in subseasonal to decadal prediction. Bull. Amer. Meteor. Soc., 101(6), E869−E896, https://doi.org/10.1175/bams-d-19-0037.1.
Monerie, P.-A., J. I. Robson, N. J. Dunstone, and A. G. Turner, 2021: Skilful seasonal predictions of global monsoon summer precipitation with DePreSys3. Environmental Research Letters, 16(10), 104035, https://doi.org/10.1088/1748-9326/ac2a65.
Pan, M. X., and M. Q. Lu, 2022: Long-lead predictability of western North Pacific subtropical high. J. Geophys. Res., 127(5), e2021JD035967, https://doi.org/10.1029/2021JD035967.
Podlaha, A., S. Bowen, and C. Darbinyan, 2016: Global catastrophe recap: July 2016. Available from https://www.aon.com/reinsurance/thoughtleadership/default.jsp.
Podlaha, A., S. Bowen, M. Lörinc, B. Kerschner, and G. Srivastava, 2020: Global catastrophe recap: September 2020. [Available online from https://www.aon.com/reinsurance/thoughtleadership/default.jsp]
Podlaha, A., S. Bowen, M. Lörinc, and B. Kerschner, 2021: Global catastrophe recap: September 2021. [Available online from https://www.aon.com/reinsurance/thoughtleadership/default.jsp]
Schneider, U., A. Becker, P. Finger, E. Rustemeier, and M. Ziese, 2020: GPCC full data monthly product version 2020 at 1.0°: Monthly land-surface precipitation from rain-gauges built on GTS-based and historical data. Deutscher Wetterdienst. Available from https://doi.org/10.5676/DWD_GPCC/FD_M_V2020_100.
Smith, D. M., and Coauthors, 2019: Robust skill of decadal climate predictions. npj Climate and Atmospheric Science, 2(1), 13, https://doi.org/10.1038/s41612-019-0071-y.
Su, Q., R. Y. Lu, and C. F. Li, 2014: Large-scale circulation anomalies associated with interannual variation in monthly rainfall over South China from May to August. Adv. Atmos. Sci., 31(2), 273−282, https://doi.org/10.1007/s00376-013-3051-x.
Takaya, Y., Y. Kosaka, M. Watanabe, and S. Maeda, 2021: Skilful predictions of the Asian summer monsoon one year ahead. Nature Communications, 12(1), 2094, https://doi.org/10.1038/s41467-021-22299-6.
Tang, Y. M., Z. W. Deng, X. B. Zhou, Y. J. Cheng, and D. K. Chen, 2008: Interdecadal variation of ENSO predictability in multiple models. J. Climate, 21(18), 4811−4833, https://doi.org/10.1175/2008JCLI2193.1.
Wang, B., and Z. Fan, 1999: Choice of South Asian summer monsoon indices. Bull. Amer. Meteor. Soc., 80(4), 629−638, https://doi.org/10.1175/1520-0477(1999)080<0629:COSASM>2.0.CO;2.
Wang, B., and LinHo, 2002: Rainy season of the Asian–Pacific summer monsoon. J. Climate, 15(4), 386−398, https://doi.org/10.1175/1520-0442(2002)015<0386:rsotap>2.0.co;2.
Wang, B., Z. W. Wu, J. P. Li, J. Liu, C.-P. Chang, Y. H. Ding, and G. X. Wu, 2008: How to measure the strength of the East Asian summer monsoon. J. Climate, 21(17), 4449−4463, https://doi.org/10.1175/2008jcli2183.1.
Weisheimer, A., M. A. Balmaseda, T. N. Stockdale, M. Mayer, S. Sharmila, H. Hendon, and O. Alves, 2022: Variability of ENSO forecast skill in 2-year global reforecasts over the 20th Century. Geophys. Res. Lett., 49(10), e2022GL097885, https://doi.org/10.1029/2022gl097885.
Wilks, D. S., 2019: Forecast verification. Statistical Methods in the Atmospheric Sciences. 4th ed, D. S. Wilks, Ed., Elsevier, 369−483, https://doi.org/10.1016/b978-0-12-815823-4.00009-2.
Williams, K. D., and Coauthors, 2015: The Met Office Global Coupled model 2.0 (GC2) configuration. Geoscientific Model Development, 8(5), 1509−1524, https://doi.org/10.5194/gmd-8-1509-2015.
Xie, S.-P., Y. Kosaka, Y. Du, K. M. Hu, J. S. Chowdary, and G. Huang, 2016: Indo-western Pacific ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33(4), 411−432, https://doi.org/10.1007/s00376-015-5192-6.
Yang, Q., Z. G. Ma, X. G. Fan, Z.-L. Yang, Z. F. Xu, and P. L. Wu, 2017: Decadal modulation of precipitation patterns over eastern China by sea surface temperature anomalies. J. Climate, 30(17), 7017−7033, https://doi.org/10.1175/JCLI-D-16-0793.1.
Zhang, Y., W. Wang, R. Q. Ding, J. P. Li, and C. Sun, 2022: Modulation of the predictability of the East Asian summer monsoon by the interdecadal Pacific oscillation. J. Geophys. Res., 127, e2021JD035903, https://doi.org/10.1029/2021JD035903.
Zhang, Z. Q., X. G. Sun, and X.-Q. Yang, 2018: Understanding the interdecadal variability of East Asian summer monsoon precipitation: Joint influence of three oceanic signals. J. Climate, 31(14), 5485−5506, https://doi.org/10.1175/JCLI-D-17-0657.1.
Zhu, Y. L., T. Wang, and J. H. Ma, 2016: Influence of internal decadal variability on the summer rainfall in Eastern China as simulated by CCSM4. Adv. Atmos. Sci., 33(6), 706−714, https://doi.org/10.1007/s00376-016-5269-x.