Alexander, M. A., and C. Deser, 1995: A mechanism for the recurrence of wintertime midlatitude SST anomalies. J. Phys. Oceanogr., 25, 122−137, https://doi.org/10.1175/1520-0485(1995)025<0122:AMFTRO>2.0.CO;2.
Alexander, M. A., C. Deser, and M. S. Timlin, 1999: The reemergence of SST anomalies in the North Pacific Ocean. J. Climate, 12, 2419−2433, https://doi.org/10.1175/1520-0442(1999)012<2419:TROSAI>2.0.CO;2.
Belkin, I., R. Krishfield, and S. Honjo, 2002: Decadal variability of the North Pacific Polar Front: Subsurface warming versus surface cooling. Geophys. Res. Lett., 29, 65-1−65-4, https://doi.org/10.1029/2001GL013806.
Bjerknes, J., and H. Solberg, 1922: Life cycle of cyclones and the polar front theory of atmospheric circulation. Geofys. Publ., 3, 3−18.
Bôas, A. B. V., O. T. Sato, A. Chaigneau, and G. P. Castelão, 2015: The signature of mesoscale eddies on the air-sea turbulent heat fluxes in the South Atlantic Ocean. Geophys. Res. Lett., 42, 1856−1862, https://doi.org/10.1002/2015GL063105.
Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 1046−1053, https://doi.org/10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2.
Booth, J. F., L. A. Thompson, J. Patoux, K. A. Kelly, and S. Dickinson, 2010: The signature of the midlatitude tropospheric storm tracks in the surface winds. J. Climate, 23, 1160−1174, https://doi.org/10.1175/2009JCLI3064.1.
Booth, J. F., L. Thompson, J. Patoux, and K. A. Kelly, 2012: Sensitivity of midlatitude storm intensification to perturbations in the sea surface temperature near the Gulf Stream. Mon. Wea. Rev., 140, 1241−1256, https://doi.org/10.1175/MWR-D-11-00195.1.
Bourras, D., G. Reverdin, H. Giordani, and G. Caniaux, 2004: Response of the atmospheric boundary layer to a mesoscale oceanic eddy in the northeast Atlantic. J. Geophys. Res.: Atmos., 109, D18114, https://doi.org/10.1029/2004JD004799.
Brachet, S., F. Codron, Y. Feliks, M. Ghil, H. Le Treut, and E. Simonnet, 2012: Atmospheric circulations induced by a midlatitude SST front: A GCM study. J. Climate, 25, 1847−1853, https://doi.org/10.1175/JCLI-D-11-00329.1.
Branstator, G., 2002: Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic Oscillation. J. Climate, 15, 1893−1910, https://doi.org/10.1175/1520-0442(2002)015<1893:CTTJSW>2.0.CO;2.
Brayshaw, D. J., B. Hoskins, and M. Blackburn, 2008: The storm-track response to idealized SST perturbations in an aquaplanet GCM. J. Atmos. Sci., 65, 2842−2860, https://doi.org/10.1175/2008JAS2657.1.
Brayshaw, D. J., B. Hoskins, and M. Blackburn, 2009: The basic ingredients of the North Atlantic storm track. Part I: Land-sea contrast and orography. J. Atmos. Sci., 66, 2539−2558, https://doi.org/10.1175/2009JAS3078.1.
Brayshaw, D. J., B. Hoskins, and M. Blackburn, 2011: The basic ingredients of the North Atlantic storm track. Part II: Sea surface temperatures. J. Atmos. Sci., 68, 1784−1805, https://doi.org/10.1175/2011JAS3674.1.
Broccoli, A. J., and S. Manabe, 1992: The effects of orography on midlatitude northern hemisphere dry climates. J. Climate, 5, 1181−1201, https://doi.org/10.1175/1520-0442(1992)005<1181:TEOOOM>2.0.CO;2.
Bryan, F. O., R. Tomas, J. M. Dennis, D. B. Chelton, N. G. Loeb, and J. L. McClean, 2010: Frontal scale air-sea interaction in high-resolution coupled climate models. J. Climate, 23, 6277−6291, https://doi.org/10.1175/2010JCLI3665.1.
Businger, S., T. M. Graziano, M. L. Kaplan, and R. A. Rozumalski, 2005: Cold-air cyclogenesis along the Gulf-Stream front: Investigation of diabatic impacts on cyclone development, frontal structure, and track. Meteor. Atmos. Phys., 88, 65−90, https://doi.org/10.1007/s00703-003-0050-y.
Catto, J. L., C. Jakob, G. Berry, and N. Nicholls, 2012: Relating global precipitation to atmospheric fronts. Geophys. Res. Lett., 39, 1−6, https://doi.org/10.1029/2012GL051736.
Ceballos, L. I., E. Di Lorenzo, C. D. Hoyos, N. Schneider, and B. Taguchi, 2009: North Pacific gyre oscillation synchronizes climate fluctuations in the eastern and western boundary systems. J. Climate, 22, 5163−5174, https://doi.org/10.1175/2009JCLI2848.1.
Chang, E. K. M., and I. Orlanski, 1993: On the dynamics of a storm track. J. Atmos. Sci., 50, 999−1015, https://doi.org/10.1175/1520-0469(1993)050<0999:OTDOAS>2.0.CO;2.
Chang, E. K. M., S. Lee, and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15, 2163−2183, https://doi.org/10.1175/1520-0442(2002)015<02163:STD>2.0.CO;2.
Charney, J. G., 1947: The dynamics of long waves in a baroclinic westerly current. J. Atmos. Sci., 4, 136−162, https://doi.org/10.1175/1520-0469(1947)004<0136:TDOLWI>2.0.CO;2.
Chelton, D., 2013: Mesoscale eddy effects. Nature Geoscience, 6, 594−595, https://doi.org/10.1038/ngeo1906.
Chelton, D. B., M. G. Schlax, M. H. Freilich, and R. F. Milliff, 2004: Satellite measurements reveal persistent small-scale features in ocean winds. Science, 303, 978−983, https://doi.org/10.1126/science.1091901.
Chelton, D. B., and Coauthors, 2001: Observations of coupling between surface wind stress and sea surface temperature in the eastern tropical Pacific. J. Climate, 14, 1479−1498, https://doi.org/10.1175/1520-0442(2001)014<1479:OOCBSW>2.0.CO;2.
Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91, 167−216, https://doi.org/10.1016/j.pocean.2011.01.002.
Chen, L. J., Y. L. Jia, and Q. Y. Liu, 2017: Oceanic eddy-driven atmospheric secondary circulation in the winter Kuroshio Extension region. Journal of Oceanography, 73, 295−307, https://doi.org/10.1007/s10872-016-0403-z.
Chen, S. M., 2008: The Kuroshio Extension Front from satellite sea surface temperature measurements. Journal of Oceanography, 64, 891−897, https://doi.org/10.1007/s10872-008-0073-6.
Cheng, Y. H., C. R. Ho, Q. A. Zheng, and N. J. Kuo, 2014: Statistical characteristics of mesoscale eddies in the North Pacific derived from satellite altimetry. Remote Sensing, 6, 5164−5183, https://doi.org/10.3390/rs6065164.
Davis, R. E., 1976: Predictability of sea surface temperature and sea level pressure anomalies over the North Pacific Ocean. J. Phys. Oceanogr., 6, 249−266, https://doi.org/10.1175/1520-0485(1976)006<0249:POSSTA>2.0.CO;2.
Davis, R. E., 1978: Predictability of sea level pressure anomalies over the North Pacific Ocean. J. Phys. Oceanogr., 8, 233−246, https://doi.org/10.1175/1520-0485(1978)008<0233:POSLPA>2.0.CO;2.
De Vries, H., S. Scher, R. Haarsma, S. Drijfhout, and A. V. Delden, 2019: How Gulf-Stream SST-fronts influence Atlantic winter storms. Climate Dyn., 52, 5899−5909, https://doi.org/10.1007/s00382-018-4486-7.
Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553−597, https://doi.org/10.1002/qj.828.
Deremble, B., G. Lapeyre, and M. Ghil, 2012: Atmospheric dynamics triggered by an oceanic SST front in a moist quasigeostrophic model. J. Atmos. Sci., 69, 1617−1632, https://doi.org/10.1175/JAS-D-11-0288.1.
Deser, C., M. A. Alexander, and M. S. Timlin, 1999: Evidence for a Wind-Driven Intensification of the Kuroshio Current Extension from the 1970s to the 1980s. J. Climate, 12, 1697−1706, https://doi.org/10.1175/1520-0442(1999)012<1697:EFAWDI>2.0.CO;2.
Deser, C., R. A. Tomas, and S. L. Peng, 2007: The transient atmospheric circulation response to North Atlantic SST and sea ice anomalies. J. Climate, 20, 4751−4767, https://doi.org/10.1175/JCLI4278.1.
Dewar, W. K., 2003: Nonlinear midlatitude ocean adjustment. J. Phys. Oceanogr., 33, 1057−1082, https://doi.org/10.1175/1520-0485(2003)033<1057:NMOA>2.0.CO;2.
Dijkstra, H. A., and M. Ghil, 2005: Low-frequency variability of the large-scale ocean circulation: A dynamical systems approach. Rev. Geophys., 43, RG3002, https://doi.org/10.1029/2002RG000122.
Ding, M. R., P. F. Lin, H. L. Liu, and F. Chai, 2018: Increased Eddy Activity in the Northeastern Pacific during 1993-2011. J. Climate, 31, 387−399, https://doi.org/10.1175/JCLI-D-17-0309.1.
Dong, C. M., F. Nencioli, Y. Liu, and J. C. McWilliams, 2011: An automated approach to detect oceanic eddies from satellite remotely sensed sea surface temperature data. IEEE Geoscience and Remote Sensing Letters, 8, 1055−1059, https://doi.org/10.1109/LGRS.2011.2155029.
Dong, C. M., J. C. McWilliams, Y. Liu, and D. K. Chen, 2014: Global heat and salt transports by eddy movement. Nature Communications, 5, 3294, https://doi.org/10.1038/ncomms4294.
Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1, 33−52, https://doi.org/10.1111/j.2153-3490.1949.tb01265.x.
Faghmous, J. H., I. Frenger, Y. S. Yao, R. Warmka, A. Lindell, and V. Kumar, 2015: A daily global mesoscale ocean eddy dataset from satellite altimetry. Scientific Data, 2, 150028, https://doi.org/10.1038/sdata.2015.28.
Feliks, Y., M. Ghil, and E. Simonnet, 2004: Low-frequency variability in the midlatitude atmosphere induced by an oceanic thermal front. J. Atmos. Sci., 61, 961−981, https://doi.org/10.1175/1520-0469(2004)061<0961:LVITMA>2.0.CO;2.
Feliks, Y., M. Ghil, and E. Simonnet, 2007: Low-frequency variability in the midlatitude baroclinic atmosphere induced by an oceanic thermal front. J. Atmos. Sci., 64, 97−116, https://doi.org/10.1175/JAS3780.1.
Feliks, Y., M. Ghil, and A. W. Robertson, 2011: The atmospheric circulation over the North Atlantic as induced by the SST field. J. Climate, 24, 522−542, https://doi.org/10.1175/2010JCLI3859.1.
Ferreira, D., and C. Frankignoul, 2005: The transient atmospheric response to midlatitude SST anomalies. J. Climate, 18, 1049−1067, https://doi.org/10.1175/JCLI-3313.1.
Foussard, A., G. Lapeyre, and R. Plougonven, 2019: Storm track response to oceanic eddies in idealized atmospheric simulations. J. Climate, 32, 445−463, https://doi.org/10.1175/JCLI-D-18-0415.1.
Frankignoul, C., 1985: Sea surface temperature anomalies, planetary waves, and air-sea feedback in the middle latitudes. Rev. Geophys., 23, 357−390, https://doi.org/10.1029/RG023i004p00357.
Frankignoul, C., and K. Hasselmann, 1977: Stochastic climate models, Part II Application to sea-surface temperature anomalies and thermocline variability. Tellus, 29, 289−305, https://doi.org/10.1111/j.2153-3490.1977.tb00740.x.
Frankignoul, C., and N. Sennéchael, 2007: Observed influence of North Pacific SST anomalies on the atmospheric circulation. J. Climate, 20, 592−606, https://doi.org/10.1175/JCLI4021.1.
Frankignoul, C., N. Chouaib, and Z. Y. Liu, 2011a: Estimating the observed atmospheric response to SST anomalies: Maximum covariance analysis, generalized equilibrium feedback assessment, and maximum response estimation. J. Climate, 24, 2523−2539, https://doi.org/10.1175/2010JCLI3696.1.
Frankignoul, C., N. Sennéchael, Y. O. Kwon, and M. A. Alexander, 2011b: Influence of the meridional shifts of the Kuroshio and the Oyashio extensions on the atmospheric circulation. J. Climate, 24, 762−777, https://doi.org/10.1175/2010JCLI3731.1.
Frenger, I., N. Gruber, R. Knutti, and M. Münnich, 2013: Imprint of southern Ocean eddies on winds, clouds and rainfall. Nature Geoscience, 6, 608−612, https://doi.org/10.1038/ngeo1863.
Gan, B. L., and L. X. Wu, 2013: Seasonal and long-term coupling between wintertime storm tracks and sea surface temperature in the North Pacific. J. Climate, 26, 6123−6136, https://doi.org/10.1175/JCLI-D-12-00724.1.
Gan, B. L., L. X. Wu, F. Jia, S. J. Li, W. J. Cai, H. Nakamura, M. A. Alexander, and A. J. Miller, 2017: On the response of the aleutian low to greenhouse warming. J. Climate, 30, 3907−3925, https://doi.org/10.1175/JCLI-D-15-0789.1.
Gao, J. X., R. H. Zhang, and H. N. Wang, 2019: Mesoscale SST perturbation-induced impacts on climatological precipitation in the Kuroshio-Oyashio extension region, as revealed by the WRF simulations. Journal of Oceanology and Limnology, 37, 385−397, https://doi.org/10.1007/s00343-019-8065-5.
Gentile, V., S. Pierini, P. de Ruggiero, and L. Pietranera, 2018: Ocean modelling and altimeter data reveal the possible occurrence of intrinsic low-frequency variability of the Kuroshio Extension. Ocean Modelling, 131, 24−39, https://doi.org/10.1016/j.ocemod.2018.08.006.
Graff, L. S., and J. H. LaCasce, 2012: Changes in the extratropical storm tracks in response to changes in SST in an AGCM. J. Climate, 25, 1854−1870, https://doi.org/10.1175/JCLI-D-11-00174.1.
Hall, N. M. J., J. Derome, and H. Lin, 2001: The extratropical signal generated by a midlatitude SST anomaly. Part I: Sensitivity at equilibrium. J. Climate, 14, 2035−2053, https://doi.org/10.1175/1520-0442(2001)014<2035:TESGBA>2.0.CO;2.
Hare, S. R., and N. J. Mantua, 2000: Empirical evidence for North Pacific regime shifts in 1977 and 1989. Progress in Oceanography, 47, 103−145, https://doi.org/10.1016/S0079-6611(00)00033-1.
Hashizume, H., S. P. Xie, W. T. Liu, and K. Takeuchi, 2001: Local and remote atmospheric response to tropical instability waves: A global view from space. J. Geophys. Res.: Atmos., 106, 10 173−10 185, https://doi.org/10.1029/2000JD900684.
Hasselmann, K., 1976: Stochastic climate models Part I. Theory. Tellus, 28, 473−485, https://doi.org/10.1111/j.2153-3490.1976.tb00696.x.
Hendon, H. H., and D. L. Hartmann, 1982: Stationary waves on a sphere: Sensitivity to thermal feedback. J. Atmos. Sci., 39, 1906−1920, https://doi.org/10.1175/1520-0469(1982)039<1906:SWOASS>2.0.CO;2.
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999−2049, https://doi.org/10.1002/qj.3803.
Hirata, H., R. Kawamura, M. Kato, and T. Shinoda, 2015: Influential role of moisture supply from the Kuroshio/Kuroshio Extension in the rapid development of an extratropical cyclone. Mon. Wea. Rev., 143, 4126−4144, https://doi.org/10.1175/MWR-D-15-0016.1.
Hirata, H., R. Kawamura, M. Kato, and T. Shinoda, 2016: Response of rapidly developing extratropical cyclones to sea surface temperature variations over the western Kuroshio-Oyashio confluence region. J. Geophys. Res.: Atmos., 121, 3843−3858, https://doi.org/10.1002/2015JD024391.
Hirata, H., R. Kawamura, M. Kato, and T. Shinoda, 2018: A positive feedback process related to the rapid development of an extratropical cyclone over the Kuroshio/Kuroshio Extension. Mon. Wea. Rev., 146, 417−433, https://doi.org/10.1175/MWR-D-17-0063.1.
Hogg, A. M. C., P. D. Killworth, J. R. Blundell, and W. K. Dewar, 2005: Mechanisms of decadal variability of the wind-driven ocean circulation. J. Phys. Oceanogr., 35, 512−531, https://doi.org/10.1175/JPO2687.1.
Honda, M., and H. Nakamura, 2001: Interannual seesaw between the Aleutian and Icelandic lows. Part II: Its significance in the interannual variability over the wintertime northern hemisphere. J. Climate, 14, 4512−4529, https://doi.org/10.1175/1520-0442(2001)014<4512:ISBTAA>2.0.CO;2.
Honda, M., H. Nakamura, J. Ukita, I. Kousaka, and K. Takeuchi, 2001: Interannual seesaw between the Aleutian and Icelandic lows. Part I: Seasonal dependence and life cycle. J. Climate, 14, 1029−1042, https://doi.org/10.1175/1520-0442(2001)014<1029:ISBTAA>2.0.CO;2.
Honda, M., Y. Kushnir, H. Nakamura, S. Yamane, and S. E. Zebiak, 2005: Formation, mechanisms, and predictability of the Aleutian-Icelandic low seesaw in ensemble AGCM simulations. J. Climate, 18, 1423−1434, https://doi.org/10.1175/JCLI3353.1.
Hoskins, B., M. Pedder, and D. W. Jones, 2003: The omega equation and potential vorticity. Quart. J. Roy. Meteor. Soc., 129, 3277−3303, https://doi.org/10.1256/qj.02.135.
Hoskins, B. J., 1983: Modelling of the transient eddies and their feedback on the mean flow. Large-scale Dynamical Processes in the Atmosphere, B. J. Hoskins and R. P. Pearce, Eds., Academic Press, 169−199.
Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 1179−1196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.
Hoskins, B. J., and P. J. Valdes, 1990: On the existence of storm-tracks. J. Atmos. Sci., 47, 1854−1864, https://doi.org/10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2.
Hoskins, B. J., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50, 1661−1671, https://doi.org/10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2.
Hoskins, B. J., I. N. James, and G. H. White, 1983: The shape, propagation and mean-flow interaction of large-scale weather systems. J. Atmos. Sci., 40, 1595−1612, https://doi.org/10.1175/1520-0469(1983)040<1595:TSPAMF>2.0.CO;2.
Hotta, D., and H. Nakamura, 2011: On the significance of the sensible heat supply from the ocean in the maintenance of the mean baroclinicity along storm tracks. J. Climate, 24, 3377−3401, https://doi.org/10.1175/2010JCLI3910.1.
Inatsu, M., and J. B. Hoskins, 2004: The zonal asymmetry of the southern hemisphere winter storm track. J. Climate, 17, 4882−4892, https://doi.org/10.1175/JCLI-3232.1.
Isoguchi, O., H. Kawamura, and E. Oka, 2006: Quasi-stationary jets transporting surface warm waters across the transition zone between the subtropical and the subarctic gyres in the North Pacific. J. Geophys. Res.: Oceans, 111, C10003, https://doi.org/10.1029/2005JC003402.
Iwao, K., M. Inatsu, and M. Kimoto, 2012: Recent changes in explosively developing extratropical cyclones over the winter northwestern Pacific. J. Climate, 25, 7282−7296, https://doi.org/10.1175/JCLI-D-11-00373.1.
Jia, Y. L., P. Chang, I. Szunyogh, R. Saravanan, and J. T. Bacmeister, 2019: A modeling strategy for the investigation of the effect of mesoscale SST variability on atmospheric dynamics. Geophys. Res. Lett., 46, 3982−3989, https://doi.org/10.1029/2019GL081960.
Jiang, S., F. F. Jin, and M. Ghil, 1995: Multiple equilibria, periodic, and aperiodic solutions in a wind-driven, double-gyre, shallow-water model. J. Phys. Oceanogr., 25, 764−786, https://doi.org/10.1175/1520-0485(1995)025<0764:MEPAAS>2.0.CO;2.
Kaspi, Y., and T. Schneider, 2013: The role of stationary eddies in shaping midlatitude storm tracks. J. Atmos. Sci., 70, 2596−2613, https://doi.org/10.1175/JAS-D-12-082.1.
Kelly, K. A., R. J. Small, R. M. Samelson, B. Qiu, T. M. Joyce, Y. O. Kwon, and M. F. Cronin, 2010: Western boundary currents and frontal air-sea interaction: Gulf stream and Kuroshio Extension. J. Climate, 23, 5644−5667, https://doi.org/10.1175/2010JCLI3346.1.
Kelly, P. M., and P. D. Jones, 1996: Removal of the El Niño-Southern Oscillation signal from the gridded surface air temperature data set. J. Geophys. Res., 101, 19 013−19 022, https://doi.org/10.1029/96JD01173.
Kida, S., and Coauthors, 2015: Oceanic fronts and jets around Japan: A review. Journal of Oceanography, 71, 469−497, https://doi.org/10.1007/s10872-015-0283-7.
Kilpatrick, T., N. Schneider, and B. Qiu, 2014: Boundary layer convergence induced by strong winds across a midlatitude SST front. J. Climate, 27, 1698−1718, https://doi.org/10.1175/JCLI-D-13-00101.1.
Kilpatrick, T., N. Schneider, and B. Qiu, 2016: Atmospheric response to a midlatitude SST front: Alongfront winds. J. Atmos. Sci., 73, 3489−3509, https://doi.org/10.1175/JAS-D-15-0312.1.
Kushnir, Y., W. A. Robinson, I. Bladé, N. M. J. Hall, S. Peng, and R. Sutton, 2002: Atmospheric GCM response to extratropical SST anomalies: Synthesis and evaluation. J. Climate, 15, 2233−2256, https://doi.org/10.1175/1520-0442(2002)015<2233:AGRTES>2.0.CO;2.
Kuwano-Yoshida, A., and S. Minobe, 2017: Storm-track response to SST fronts in the northwestern Pacific region in an AGCM. J. Climate, 30, 1081−1102, https://doi.org/10.1175/JCLI-D-16-0331.1.
Kuwano-Yoshida, A., T. Enomoto, and W. Ohfuchi, 2010: An improved PDF cloud scheme for climate simulations. Quart. J. Roy. Meteor. Soc., 136, 1583−1597, https://doi.org/10.1002/qj.660.
Kwon, Y. O., M. A. Alexander, N. A. Bond, C. Frankignoul, H. Nakamura, B. Qiu, and L. A. Thompson, 2010: Role of the Gulf Stream and Kuroshio-Oyashio Systems in large-scale atmosphere-ocean interaction: A review. J. Climate, 23, 3249−3281, https://doi.org/10.1175/2010JCLI3343.1.
Lambaerts, J., G. Lapeyre, R. Plougonven, and P. Klein, 2013: Atmospheric response to sea surface temperature mesoscale structures. J. Geophys. Res.: Atmos., 118, 9611−9621, https://doi.org/10.1002/jgrd.50769.
Latif, M., and T. P. Barnett, 1994: Causes of decadal climate variability over the North Pacific and North America. Science, 266, 634−637, https://doi.org/10.1126/science.266.5185.634.
Lee, S., and H. Kim, 2003: The dynamical relationship between subtropical and eddy-driven jets. J. Atmos. Sci., 60, 1490−1503, https://doi.org/10.1175/1520-0469(2003)060<1490:TDRBSA>2.0.CO;2.
Lee, W. J., and M. Mak, 1996: The role of orography in the dynamics of storm tracks. J. Atmos. Sci., 53, 1737−1750, https://doi.org/10.1175/1520-0469(1996)053<1737:TROOIT>2.0.CO;2.
Leyba, I. M., M. Saraceno, and S. A. Solman, 2017: Air-sea heat fluxes associated to mesoscale eddies in the Southwestern Atlantic Ocean and their dependence on different regional conditions. Climate Dyn., 49, 2491−2501, https://doi.org/10.1007/s00382-016-3460-5.
Lindzen, R. S., and B. Farrell, 1980: A simple approximate result for the maximum growth rate of baroclinic instabilities. J. Atmos. Sci., 37, 1648−1654, https://doi.org/10.1175/1520-0469(1980)037<1648:ASARFT>2.0.CO;2.
Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 2418−2436, https://doi.org/10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2.
Liu, J. W., S. P. Zhang, and S. P. Xie, 2013: Two types of surface wind response to the East China Sea Kuroshio front. J. Climate, 26, 8616−8627, https://doi.org/10.1175/JCLI-D-12-00092.1.
Liu, Q. Y., N. Wen, and Z. Y. Liu, 2006: An observational study of the impact of the North Pacific SST on the atmosphere. Geophys. Res. Lett., 33, L18611, https://doi.org/10.1029/2006GL026082.
Liu, T. W., X. S. Xie, P. S. Polito, S. P. Xie, and H. Hashizume, 2000: Atmospheric manifestation of tropical instability wave observed by QuikSCAT and tropical rain measuring mission. Geophys. Res. Lett., 27, 2545−2548, https://doi.org/10.1029/2000GL011545.
Liu, X., and Coauthors, 2021: Ocean fronts and eddies force atmospheric rivers and heavy precipitation in western North America. Nature Communications, 12, 1268, https://doi.org/10.1038/s41467-021-21504-w.
Liu, Z. Y., and E. Di Lorenzo, 2018: Mechanisms and predictability of Pacific decadal variability. Current Climate Change Reports, 4, 128−144, https://doi.org/10.1007/s40641-018-0090-5.
Liu, Z. Y., Y. Liu, L. X. Wu, and R. Jacob, 2007: Seasonal and long-term atmospheric responses to reemerging North Pacific Ocean variability: A combined dynamical and statistical assessment. J. Climate, 20, 955−980, https://doi.org/10.1175/JCLI4041.1.
Liu, Z. Y., L. Fan, S. I. Shin, and Q. Y. Liu, 2012a: Assessing atmospheric response to surface forcing in the observations. Part II: Cross validation of seasonal response using GEFA and LIM. J. Climate, 25, 6817−6834, https://doi.org/10.1175/JCLI-D-11-00630.1.
Liu, Z. Y., N. Wen, and L. Fan, 2012b: Assessing atmospheric response to surface forcing in the observations. Part I: Cross validation of annual response using GEFA, LIM, and FDT. J. Climate, 25, 6796−6816, https://doi.org/10.1175/JCLI-D-11-00545.1.
Lu, J., G. Chen, and D. M. W. Frierson, 2010: The position of the midlatitude storm track and eddy-driven westerlies in aquaplanet AGCMs. J. Atmos. Sci., 67, 3984−4000, https://doi.org/10.1175/2010JAS3477.1.
Luo, D. H., S. H. Feng, and L. X. Wu, 2016: The eddy-dipole mode interaction and the decadal variability of the Kuroshio Extension system. Ocean Dynamics, 66, 1317−1332, https://doi.org/10.1007/s10236-016-0991-6.
Ma, J., H. M. Xu, C. M. Dong, P. F. Lin, and Y. Liu, 2015a: Atmospheric responses to oceanic eddies in the Kuroshio Extension region. J. Geophys. Res.: Atmos., 120, 6313−6330, https://doi.org/10.1002/2014JD022930.
Ma, X. H., and Coauthors, 2015b: Distant influence of Kuroshio eddies on North Pacific weather patterns? Scientific Reports, 5, 17785, https://doi.org/10.1038/srep17785.
Ma, X. H., and Coauthors, 2016: Western boundary currents regulated by interaction between ocean eddies and the atmosphere. Nature, 535, 533−537, https://doi.org/10.1038/nature18640.
Ma, X. H., P. Chang, R. Saravanan, R. Montuoro, H. Nakamura, D. X. Wu, X. P. Lin, and L. X. Wu, 2017: Importance of resolving Kuroshio front and eddy influence in simulating the North Pacific storm track. J. Climate, 30, 1861−1880, https://doi.org/10.1175/JCLI-D-16-0154.1.
Marshall, J. C., and R. A. Plumb, 2008: Atmosphere, Ocean and Climate Dynamics: An Introductory Text. R. Dmowska, D. Hartmann, and H.T. Rossby, Eds. Elsevier Academic Press, London, 345 pp.
Masunaga, R., H. Nakamura, T. Miyasaka, K. Nishii, and Y. Tanimoto, 2015: Separation of climatological imprints of the Kuroshio Extension and Oyashio Fronts on the wintertime atmospheric boundary layer: Their sensitivity to SST resolution prescribed for atmospheric reanalysis. J. Climate, 28, 1764−1787, https://doi.org/10.1175/JCLI-D-14-00314.1.
Masunaga, R., H. Nakamura, T. Miyasaka, K. Nishii, and B. Qiu, 2016: Interannual modulations of oceanic imprints on the wintertime atmospheric boundary layer under the changing dynamical regimes of the Kuroshio Extension. J. Climate, 29, 3273−3296, https://doi.org/10.1175/JCLI-D-15-0545.1.
Masunaga, R., H. Nakamura, B. Taguchi, and T. Miyasaka, 2020a: Processes shaping the frontal-scale time-mean surface wind convergence patterns around the Kuroshio Extension in winter. J. Climate, 33, 3−25, https://doi.org/10.1175/JCLI-D-19-0097.1.
Masunaga, R., H. Nakamura, B. Taguchi, and T. Miyasaka, 2020b: Processes shaping the frontal-scale time-mean surface wind convergence patterns around the Gulf Stream and Agulhas Return Current in winter. J. Climate, 33, 9083−9101, https://doi.org/10.1175/JCLI-D-19-0948.1.
McCalpin, J. D., and D. B. Haidvogel, 1996: Phenomenology of the low-frequency variability in a reduced-gravity, quasigeostrophic double-gyre model. J. Phys. Oceanogr., 26, 739−752, https://doi.org/10.1175/1520-0485(1996)026<0739:POTLFV>2.0.CO;2.
McWilliams, J. C., 2016: Submesoscale currents in the ocean. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 472, 20160117, https://doi.org/10.1098/rspa.2016.0117.
Michel, C., and G. Rivière, 2014: Sensitivity of the position and variability of the eddy-driven jet to different SST profiles in an aquaplanet general circulation model. J. Atmos. Sci., 71, 349−371, https://doi.org/10.1175/JAS-D-13-074.1.
Miller, A. J., D. R. Cayan, and W. B. White, 1998: A westward-intensified decadal change in the North Pacific thermocline and gyre-scale circulation. J. Climate, 11, 3112−3127, https://doi.org/10.1175/1520-0442(1998)011<3112:AWIDCI>2.0.CO;2.
Minobe, S., A. Kuwano-Yoshida, N. Komori, S. P. Xie, and R. J. Small, 2008: Influence of the Gulf Stream on the troposphere. Nature, 452, 206−209, https://doi.org/10.1038/nature06690.
Minobe, S., M. Miyashita, A. Kuwano-Yoshida, H. Tokinaga, and S. P. Xie, 2010: Atmospheric response to the Gulf Stream: Seasonal variations. J. Climate, 23, 3699−3719, https://doi.org/10.1175/2010JCLI3359.1.
Miyama, T., M. Nonaka, H. Nakamura, and A. Kuwano-Yoshida, 2012: A striking early-summer event of a convective rainband persistent along the warm Kuroshio in the East China Sea. Tellus A: Dynamic Meteorology and Oceanography, 64, 18962, https://doi.org/10.3402/tellusa.v64i0.18962.
Mizuno, K., and W. B. White, 1983: Annual and interannual variability in the Kuroshio current system. J. Phys. Oceanogr., 13, 1847−1867, https://doi.org/10.1175/1520-0485(1983)013<1847:AAIVIT>2.0.CO;2.
Nakamura, H., and A. S. Kazmin, 2003: Decadal changes in the North Pacific oceanic frontal zones as revealed in ship and satellite observations. J. Geophys. Res., 108, 3078, https://doi.org/10.1029/1999JC000085.
Nakamura, M., and S. Yamane, 2009: Dominant anomaly patterns in the near-surface baroclinicity and accompanying anomalies in the atmosphere and oceans. Part I: North Atlantic basin. J. Climate, 22, 880−904, https://doi.org/10.1175/2008JCLI2297.1.
Nakamura, M., and S. Yamane, 2010: Dominant anomaly patterns in the near-surface baroclinicity and accompanying anomalies in the atmosphere and oceans. Part II: North Pacific basin. J. Climate, 23, 6445−6467, https://doi.org/10.1175/2010JCLI3017.1.
Nakamura, M., and T. Miyama, 2014: Impacts of the Oyashio temperature front on the regional climate. J. Climate, 27, 7861−7873, https://doi.org/10.1175/JCLI-D-13-00609.1.
Nakamura, H., T. Sampe, Y. Tanimoto, and A. Shimpo, 2004: Observed associations among storm tracks, jet streams and midlatitude oceanic fronts. Earths Climate: The Ocean-Atmosphere Interaction, C. Wang, S. P. Xie, and J. A. Carton, Eds., American Geophysical Union, 147: 329−346, https: //doi.org/10.1029/147GM18.
Nakamura, H., T. Sampe, A. Goto, W. Ohfuchi, and S. P. Xie, 2008: On the importance of midlatitude oceanic frontal zones for the mean state and dominant variability in the tropospheric circulation. Geophys. Res. Lett., 35, L15709, https://doi.org/10.1029/2008GL034010.
Nakano, H., H. Tsujino, K. Sakamoto, S. Urakawa, T. Toyoda, and G. Yamanaka, 2018: Identification of the fronts from the Kuroshio Extension to the Subarctic Current using absolute dynamic topographies in satellite altimetry products. Journal of Oceanography, 74, 393−420, https://doi.org/10.1007/s10872-018-0470-4.
Newman, P. A., L. Coy, S. Pawson, and L. R. Lait, 2016: The anomalous change in the QBO in 2015-2016. Geophys. Res. Lett., 43, 8791−8797, https://doi.org/10.1002/2016GL070373.
Nkwinkwa Njouodo, A. S. N., S. Koseki, N. Keenlyside, and M. Rouault, 2018: Atmospheric signature of the Agulhas Current. Geophys. Res. Lett., 45, 5185−5193, https://doi.org/10.1029/2018GL077042.
Nonaka, M., and S. P. Xie, 2003: Covariations of sea surface temperature and wind over the Kuroshio and its extension: Evidence for ocean-to-atmosphere feedback. J. Climate, 16, 1404−1413, https://doi.org/10.1175/1520-0442(2003)16<1404:COSSTA>2.0.CO;2.
Nonaka, M., H. Nakamura, Y. Tanimoto, T. Kagimoto, and H. Sasaki, 2006: Decadal variability in the Kuroshio-Oyashio Extension simulated in an eddy-resolving OGCM. J. Climate, 19, 1970−1989, https://doi.org/10.1175/JCLI3793.1.
Nonaka, M., H. Nakamura, Y. Tanimoto, T. Kagimoto, and H. Sasaki, 2008: Interannual-to-decadal variability in the Oyashio and its influence on temperature in the subarctic frontal zone: An eddy-resolving OGCM simulation. J. Climate, 21, 6283−6303, https://doi.org/10.1175/2008JCLI2294.1.
Nonaka, M., H. Nakamura, B. Taguchi, N. Komori, A. Kuwano-Yoshida, and K. Takaya, 2009: Air-sea heat exchanges characteristic of a prominent midlatitude oceanic front in the South Indian Ocean as simulated in a high-resolution coupled GCM. J. Climate, 22, 6515−6535, https://doi.org/10.1175/2009JCLI2960.1.
Nonaka, M., H. Sasaki, B. Taguchi, and N. Schneider, 2020: Atmospheric-driven and intrinsic interannual-to-decadal variability in the Kuroshio Extension jet and eddy activities. Frontiers in Marine Science, 7, 547442, https://doi.org/10.3389/fmars.2020.547442.
O’Neill, L. W., 2012: Wind speed and stability effects on coupling between surface wind stress and SST observed from buoys and satellite. J. Climate, 25, 1544−1569, https://doi.org/10.1175/JCLI-D-11-00121.1.
O’Neill, L. W., D. B. Chelton, and S. K. Esbensen, 2003: Observations of SST-induced perturbations of the wind stress field over the Southern Ocean on seasonal timescales. J. Climate, 16, 2340−2354, https://doi.org/10.1175/2780.1.
O’Neill, L. W., D. B. Chelton, S. K. Esbensen, and F. J. Wentz, 2005: High-resolution satellite measurements of the atmospheric boundary layer response to SST variations along the Agulhas Return Current. J. Climate, 18, 2706−2723, https://doi.org/10.1175/JCLI3415.1.
O’Neill, L. W., S. K. Esbensen, N. Thum, R. M. Samelson, and D. B. Chelton, 2010: Dynamical analysis of the boundary layer and surface wind responses to mesoscale SST perturbations. J. Climate, 23, 559−581, https://doi.org/10.1175/2009JCLI2662.1.
O’Reilly, C. H., and A. Czaja, 2015: The response of the Pacific storm track and atmospheric circulation to Kuroshio Extension variability. Quart. J. Roy. Meteor. Soc., 141, 52−66, https://doi.org/10.1002/qj.2334.
O’Neill, L. W., T. Haack, D. B. Chelton, and E. Skyllingstad, 2017: The Gulf Stream convergence zone in the time-mean winds. J. Atmos. Sci., 74, 2383−2412, https://doi.org/10.1175/JAS-D-16-0213.1.
O’Neill, L. W., T. Haack, D. B. Chelton, and E. Skyllingstad, 2018: Reply to “Comments on ‘The Gulf Stream Convergence Zone in the Time-Mean Winds.’”. J. Atmos. Sci., 75, 2151−2153, https://doi.org/10.1175/JAS-D-18-0044.1.
Ogawa, F., H. Nakamura, K. Nishii, T. Miyasaka, and A. Kuwano-Yoshida, 2012: Dependence of the climatological axial latitudes of the tropospheric westerlies and storm tracks on the latitude of an extratropical oceanic front. Geophys. Res. Lett., 39, L05804, https://doi.org/10.1029/2011GL049922.
Okajima, S., H. Nakamura, K. Nishii, T. Miyasaka, and A. Kuwano-Yoshida, 2014: Assessing the importance of prominent warm SST anomalies over the midlatitude North Pacific in forcing large-scale atmospheric anomalies during 2011 summer and autumn. J. Climate, 27, 3889−3903, https://doi.org/10.1175/JCLI-D-13-00140.1.
Okajima, S., H. Nakamura, K. Nishii, T. Miyasaka, A. Kuwano-Yoshida, B. Taguchi, M. Mori, and Y. Kosaka, 2018: Mechanisms for the maintenance of the wintertime basin-scale atmospheric response to decadal SST variability in the North Pacific subarctic frontal zone. J. Climate, 31, 297−315, https://doi.org/10.1175/JCLI-D-17-0200.1.
Palmer, T. N., and Z. B. Sun, 1985: A modelling and observational study of the relationship between sea surface temperature in the north-west Atlantic and the atmospheric general circulation. Quart. J. Roy. Meteor. Soc., 111, 947−975, https://doi.org/10.1256/smsqj.47002.
Papritz, L., and T. Spengler, 2015: Analysis of the slope of isentropic surfaces and its tendencies over the North Atlantic. Quart. J. Roy. Meteor. Soc., 141, 3226−3238, https://doi.org/10.1002/qj.2605.
Parfitt, R., and A. Czaja, 2016: On the contribution of synoptic transients to the mean atmospheric state in the Gulf Stream region. Quart. J. Roy. Meteor. Soc., 142, 1554−1561, https://doi.org/10.1002/qj.2689.
Parfitt, R., and H. Seo, 2018: A new framework for near-surface wind convergence over the Kuroshio Extension and Gulf Stream in wintertime: The role of atmospheric fronts. Geophys. Res. Lett., 45, 9909−9918, https://doi.org/10.1029/2018GL080135.
Parfitt, R., A. Czaja, S. Minobe, and A. Kuwano-Yoshida, 2016: The atmospheric frontal response to SST perturbations in the Gulf Stream region. Geophys. Res. Lett., 43, 2299−2306, https://doi.org/10.1002/2016GL067723.
Parfitt, R., A. Czaja, and Y. O. Kwon, 2017: The impact of SST resolution change in the ERA-Interim reanalysis on wintertime Gulf Stream frontal air-sea interaction. Geophys. Res. Lett., 44, 3246−3254, https://doi.org/10.1002/2017GL073028.
Peng, S. L., and J. S. Whitaker, 1999: Mechanisms determining the atmospheric response to midlatitude SST anomalies. J. Climate, 12, 1393−1408, https://doi.org/10.1175/1520-0442(1999)012<1393:MDTART>2.0.CO;2.
Peng, S. L., L. A. Mysak, J. Derome, H. Ritchie, and B. Dugas, 1995: The difference between early and middle winter atmospheric response to sea surface temperature anomalies in the northwest Atlantic. J. Climate, 8, 137−157, https://doi.org/10.1175/1520-0442(1995)008<0137:TDBEAM>2.0.CO;2.
Peng, S. L., W. A. Robinson, and M. P. Hoerling, 1997: The modeled atmospheric response to midlatitude SST anomalies and its dependence on background circulation states. J. Climate, 10, 971−987, https://doi.org/10.1175/1520-0442(1997)010<0971:TMARTM>2.0.CO;2.
Perlin, N., S. P. de Szoeke, D. B. Chelton, R. M. Samelson, E. D. Skyllingstad, and L. W. O’Neill, 2014: Modeling the atmospheric boundary layer wind response to mesoscale sea surface temperature perturbations. Mon. Wea. Rev., 142, 4284−4307, https://doi.org/10.1175/MWR-D-13-00332.1.
Pierini, S., 2006: A Kuroshio Extension system model study: Decadal chaotic self-sustained oscillations. J. Phys. Oceanogr., 36, 1605−1625, https://doi.org/10.1175/JPO2931.1.
Pierini, S., 2010: Coherence resonance in a double-gyre model of the Kuroshio Extension. J. Phys. Oceanogr., 40, 238−248, https://doi.org/10.1175/2009JPO4229.1.
Pierini, S., 2011: Low-frequency variability, coherence resonance, and phase selection in a low-order model of the wind-driven ocean circulation. J. Phys. Oceanogr., 41, 1585−1604, https://doi.org/10.1175/JPO-D-10-05018.1.
Pierini, S., 2014: Kuroshio extension bimodality and the North Pacific oscillation: A case of intrinsic variability paced by external forcing. J. Climate, 27, 448−454, https://doi.org/10.1175/JCLI-D-13-00306.1.
Plougonven, R., A. Foussard, and G. Lapeyre, 2018: Comments on “The Gulf Stream Convergence Zone in the Time-Mean Winds. ” J. Atmos. Sci., 75, 2139−2149, https://doi.org/10.1175/JAS-D-17-0369.1.
Primeau, F., and D. Newman, 2008: Elongation and contraction of the western boundary current extension in a shallow-water model: A bifurcation analysis. J. Phys. Oceanogr., 38, 1469−1485, https://doi.org/10.1175/2007JPO3658.1.
Putrasahan, D. A., I. Kamenkovich, M. Le Hénaff, and B. P. Kirtman, 2017: Importance of ocean mesoscale variability for air-sea interactions in the Gulf of Mexico. Geophys. Res. Lett., 44, 6352−6362, https://doi.org/10.1002/2017GL072884.
Qiu, B., 2001: Kuroshio and Oyashio currents. Encyclopedia of Ocean Sciences. Academic Press, 1413−1425.
Qiu, B., 2002: Large-scale variability in the midlatitude subtropical and subpolar North Pacific ocean: Observations and causes. J. Phys. Oceanogr., 32, 353−375, https://doi.org/10.1175/1520-0485(2002)032<0353:LSVITM>2.0.CO;2.
Qiu, B., 2003: Kuroshio extension variability and forcing of the pacific decadal oscillations: Responses and potential feedback. J. Phys. Oceanogr., 33, 2465−2482, https://doi.org/10.1175/2459.1.
Qiu, B., and W. F. Miao, 2000: Kuroshio path variations south of Japan: Bimodality as a self-sustained internal oscillation. J. Phys. Oceanogr., 30, 2124−2137, https://doi.org/10.1175/1520-0485(2000)030<2124:KPVSOJ>2.0.CO;2.
Qiu, B., and S. M. Chen, 2005: Variability of the Kuroshio Extension jet, recirculation gyre, and mesoscale eddies on decadal time scales. J. Phys. Oceanogr., 35, 2090−2103, https://doi.org/10.1175/JPO2807.1.
Qiu, B., and S. M. Chen, 2006: Decadal variability in the formation of the North Pacific subtropical mode water: Oceanic versus atmospheric control. J. Phys. Oceanogr., 36, 1365−1380, https://doi.org/10.1175/JPO2918.1.
Qiu, B., and S. M. Chen, 2010: Eddy-mean flow interaction in the decadally modulating Kuroshio Extension system. Deep Sea Research Part II: Topical Studies in Oceanography, 57, 1098−1110, https://doi.org/10.1016/j.dsr2.2008.11.036.
Qiu, B., N. Schneider, and S. M. Chen, 2007: Coupled decadal variability in the North Pacific: An observationally constrained idealized model. J. Climate, 20, 3602−3620, https://doi.org/10.1175/JCLI4190.1.
Qiu, B., S. M. Chen, N. Schneider, and B. Taguchi, 2014: A coupled decadal prediction of the dynamic state of the Kuroshio Extension system. J. Climate, 27, 1751−1764, https://doi.org/10.1175/JCLI-D-13-00318.1.
Qiu, B., S. M. Chen, P. Klein, C. Ubelmann, L. L. Fu, and H. Sasaki, 2016: Reconstructability of three-dimensional upper-ocean circulation from SWOT sea surface height measurements. J. Phys. Oceanogr., 46, 947−963, https://doi.org/10.1175/JPO-D-15-0188.1.
Qiu, B., S. M. Chen, and N. Schneider, 2017: Dynamical links between the decadal variability of the Oyashio and Kuroshio Extensions. J. Climate, 30, 9591−9605, https://doi.org/10.1175/JCLI-D-17-0397.1.
Qiu, B., S. M. Chen, P. Klein, H. Torres, J. B. Wang, L. L. Fu, and D. Menemenlis, 2020a: Reconstructing upper-ocean vertical velocity field from sea surface height in the presence of unbalanced motion. J. Phys. Oceanogr., 50, 55−79, https://doi.org/10.1175/JPO-D-19-0172.1.
Qiu, B., S. M. Chen, N. Schneider, E. Oka, and S. Sugimoto, 2020b: On the reset of the wind-forced decadal Kuroshio Extension variability in Late 2017. J. Climate, 33, 10 813−10 828, https://doi.org/10.1175/JCLI-D-20-0237.1.
Renault, L., M. J. Molemaker, J. C. McWilliams, A. F. Shchepetkin, F. Lemarié, D. Chelton, S. Illig, and A. Hall, 2016: Modulation of wind work by oceanic current interaction with the atmosphere. J. Phys. Oceanogr., 46, 1685−1704, https://doi.org/10.1175/JPO-D-15-0232.1.
Renault, L., P. Marchesiello, S. Masson, and J. C. McWilliams, 2019: Remarkable control of western boundary currents by Eddy Killing, a mechanical air-sea coupling process. Geophys. Res. Lett., 46, 2743−2751, https://doi.org/10.1029/2018GL081211.
Révelard, A., C. Frankignoul, N. Sennéchael, Y. O. Kwon, and B. Qiu, 2016: Influence of the decadal variability of the Kuroshio Extension on the atmospheric circulation in the cold season. J. Climate, 29, 2123−2144, https://doi.org/10.1175/JCLI-D-15-0511.1.
Rocha, C. B., T. K. Chereskin, S. T. Gille, and D. Menemenlis, 2016: Mesoscale to submesoscale wavenumber spectra in drake passage. J. Phys. Oceanogr., 46, 601−620, https://doi.org/10.1175/JPO-D-15-0087.1.
Rouault, M., P. Verley, and B. Backeberg, 2016: Wind changes above warm Agulhas Current eddies. Ocean Scirnvr, 12, 495−506, https://doi.org/10.5194/os-12-495-2016.
Sampe, T., H. Nakamura, A. Goto, and W. Ohfuchi, 2010: Significance of a midlatitude SST frontal zone in the formation of a storm track and an eddy-driven westerly Jet. J. Climate, 23, 1793−1814, https://doi.org/10.1175/2009JCLI3163.1.
Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 1228−1251, https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.
Sasaki, Y. N., S. Minobe, T. Asai, and M. Inatsu, 2012: Influence of the Kuroshio in the East China Sea on the early summer (Baiu) rain. J. Climate, 25, 6627−6645, https://doi.org/10.1175/JCLI-D-11-00727.1.
Saulière, J., D. J. Brayshaw, B. Hoskins, and M. Blackburn, 2012: Further investigation of the impact of idealized continents and SST distributions on the northern hemisphere storm tracks. J. Atmos. Sci., 69, 840−856, https://doi.org/10.1175/JAS-D-11-0113.1.
Schultz, D. M., and Coauthors, 2019: Extratropical cyclones: A century of research on meteorology’s centerpiece. Meteor. Monogr., 59, 16.1−16.56, https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0015.1.
Seager, R., Y. Kushnir, N. H. Naik, M. A. Cane, and J. Miller, 2001: Wind-driven shifts in the latitude of the Kuroshio-Oyashio Extension and generation of SST anomalies on decadal timescales. J. Climate, 14, 4249−4265, https://doi.org/10.1175/1520-0442(2001)014<4249:WDSITL>2.0.CO;2.
Seo, Y., S. Sugimoto, and K. Hanawa, 2014: Long-term variations of the Kuroshio Extension path in winter: Meridional movement and path state change. J. Climate, 27, 5929−5940, https://doi.org/10.1175/JCLI-D-13-00641.1.
Sheldon, L., A. Czaja, B. Vannière, C. Morcrette, B. Sohet, M. Casado, and D. Smith, 2017: A ‘warm path’ for Gulf Stream-troposphere interactions. Tellus A: Dynamic Meteorology and Oceanography, 69, 1299397, https://doi.org/10.1080/16000870.2017.1299397.
Shimada, T., and S. Minobe, 2011: Global analysis of the pressure adjustment mechanism over sea surface temperature fronts using AIRS/Aqua data. Geophys. Res. Lett., 38, L06704, https://doi.org/10.1029/2010GL046625.
Skyllingstad, E. D., D. Vickers, L. Mahrt, and R. Samelson, 2007: Effects of mesoscale sea-surface temperature fronts on the marine atmospheric boundary layer. Bound.-Layer Meteor., 123, 219−237, https://doi.org/10.1007/s10546-006-9127-8.
Small, R. J., and Coauthors, 2008: Air-sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans, 45, 274−319, https://doi.org/10.1016/j.dynatmoce.2008.01.001.
Small, R. J., R. A. Tomas, and F. O. Bryan, 2014: Storm track response to ocean fronts in a global high-resolution climate model. Climate Dyn., 43, 805−828, https://doi.org/10.1007/s00382-013-1980-9.
Small, R. J., R. Msadek, Y. O. Kwon, J. F. Booth, and C. Zarzycki, 2019: Atmosphere surface storm track response to resolved ocean mesoscale in two sets of global climate model experiments. Climate Dyn., 52, 2067−2089, https://doi.org/10.1007/s00382-018-4237-9.
Smirnov, D., M. Newman, M. A. Alexander, Y. O. Kwon, and C. Frankignoul, 2015: Investigating the local atmospheric response to a realistic shift in the Oyashio sea surface temperature front. J. Climate, 28, 1126−1147, https://doi.org/10.1175/JCLI-D-14-00285.1.
Stephenson, G. R., S. T. Gille, and J. Sprintall, 2013: Processes controlling upper-ocean heat content in Drake Passage. J. Geophys. Res.: Oceans, 118, 4409−4423, https://doi.org/10.1002/jgrc.20315.
Stevens, B., and Coauthors, 2019: DYAMOND: The DYnamics of the atmospheric general circulation modeled on non-hydrostatic domains. Progress in Earth and Planetary Science, 6, 61, https://doi.org/10.1186/s40645-019-0304-z.
Stoelinga, M. T., 1996: A potential vorticity-based study of the role of diabatic heating and friction in a numerically simulated baroclinic cyclone. Mon. Wea. Rev., 124, 849−874, https://doi.org/10.1175/1520-0493(1996)124<0849:APVBSO>2.0.CO;2.
Stull, R., 2017: Practical Meteorology: An Algebra-based Survey of Atmospheric Science. University of British Columbia, 940 pp.
Sugimoto, S., and K. Hanawa, 2009: Decadal and interdecadal variations of the aleutian low activity and their relation to upper oceanic variations over the North Pacific. J. Meteor. Soc. Japan Ser II, 87, 601−614, https://doi.org/10.2151/jmsj.87.601.
Sugimoto, S., and K. Hanawa, 2011: Roles of SST anomalies on the wintertime turbulent heat fluxes in the Kuroshio-Oyashio Confluence region: Influences of warm eddies detached from the Kuroshio Extension. J. Climate, 24, 6551−6561, https://doi.org/10.1175/2011JCLI4023.1.
Sugimoto, S., N. Kobayashi, and K. Hanawa, 2014: Quasi-decadal variation in intensity of the western part of the winter subarctic SST front in the western North Pacific: The influence of Kuroshio Extension path state. J. Phys. Oceanogr., 44, 2753−2762, https://doi.org/10.1175/JPO-D-13-0265.1.
Sugimoto, S., K. Aono, and S. Fukui, 2017: Local atmospheric response to warm mesoscale ocean eddies in the Kuroshio-Oyashio Confluence region. Scientific Reports, 7, 11871, https://doi.org/10.1038/s41598-017-12206-9.
Sun, X. G., L. F. Tao, and X. Q. Yang, 2018: The influence of oceanic stochastic forcing on the atmospheric response to midlatitude North Pacific SST anomalies. Geophys. Res. Lett., 45, 9297−9304, https://doi.org/10.1029/2018GL078860.
Taguchi, B., S. P. Xie, H. Mitsudera, and A. Kubokawa, 2005: Response of the Kuroshio Extension to rossby waves associated with the 1970s climate regime shift in a high-resolution ocean model. J. Climate, 18, 2979−2995, https://doi.org/10.1175/JCLI3449.1.
Taguchi, B., S. P. Xie, N. Schneider, M. Nonaka, H. Sasaki, and Y. Sasai, 2007: Decadal variability of the Kuroshio Extension: Observations and an eddy-resolving model hindcast. J. Climate, 20, 2357−2377, https://doi.org/10.1175/JCLI4142.1.
Taguchi, B., H. Nakamura, M. Nonaka, and S. P. Xie, 2009: Influences of the Kuroshio/Oyashio Extensions on air-sea heat exchanges and storm-track activity as revealed in regional atmospheric model simulations for the 2003/04 cold season. J. Climate, 22, 6536−6560, https://doi.org/10.1175/2009JCLI2910.1.
Taguchi, B., H. Nakamura, M. Nonaka, N. Komori, A. Kuwano-Yoshida, K. Takaya, and A. Goto, 2012: Seasonal evolutions of atmospheric response to decadal SST anomalies in the North Pacific subarctic frontal zone: Observations and a coupled model simulation. J. Climate, 25, 111−139, https://doi.org/10.1175/JCLI-D-11-00046.1.
Thomas, L. N., A. Tandon, and A. Mahadevan, 2008: Submesoscale processes and dynamics. Ocean Modeling in an Eddying Regime, M. W. Hecht and H. Hasumi, Eds., American Geophysical Union, 177: 17−38.
Tian, F. X., J. S. von Storch, and E. Hertwig, 2017: Air-sea fluxes in a climate model using hourly coupling between the atmospheric and the oceanic components. Climate Dyn., 48, 2819−2836, https://doi.org/10.1007/s00382-016-3228-y.
Tierney, G., D. J. Posselt, and J. F. Booth, 2018: An examination of extratropical cyclone response to changes in baroclinicity and temperature in an idealized environment. Climate Dyn., 51, 3829−3846, https://doi.org/10.1007/s00382-018-4115-5.
Ting, M. F., 1991: The stationary wave response to a midlatitude SST anomaly in an idealized GCM. J. Atmos. Sci., 48, 1249−1275, https://doi.org/10.1175/1520-0469(1991)048<1249:TSWRTA>2.0.CO;2.
Ting, M. F., and S. L. Peng, 1995: Dynamics of the early and middle winter atmospheric responses to the northwest Atlantic SST anomalies. J. Climate, 8, 2239−2254, https://doi.org/10.1175/1520-0442(1995)008<2239:DOTEAM>2.0.CO;2.
Tokinaga, H., Y. Tanimoto, and S. P. Xie, 2005: SST-induced surface wind variations over the Brazil-Malvinas Confluence: Satellite and in situ observations. J. Climate, 18, 3470−3482, https://doi.org/10.1175/JCLI3485.1.
Valdes, P. J., and B. J. Hoskins, 1989: Linear stationary wave simulations of the time-mean climatological flow. J. Atmos. Sci., 46, 2509−2527, https://doi.org/10.1175/1520-0469(1989)046<2509:LSWSOT>2.0.CO;2.
Vannière, B., A. Czaja, and H. F. Dacre, 2017b: Contribution of the cold sector of extratropical cyclones to mean state features over the Gulf Stream in winter. Quart. J. Roy. Meteor. Soc., 143, 1990−2000, https://doi.org/10.1002/qj.3058.
Vannière, B., A. Czaja, H. Dacre, and T. Woollings, 2017a: A “Cold Path” for the Gulf Stream-Troposphere connection. J. Climate, 30, 1363−1379, https://doi.org/10.1175/JCLI-D-15-0749.1.
Wagawa, T., S. I. Ito, Y. Shimizu, S. Kakehi, and D. Ambe, 2014: Currents associated with the quasi-stationary jet separated from the Kuroshio Extension. J. Phys. Oceanogr., 44, 1636−1653, https://doi.org/10.1175/JPO-D-12-0192.1.
Wallace, J. M., and Q. Jiang, 1987: On the observed structure of the interannual variability of the atmosphere/ocean climate system. Atmospheric and Oceanic Variability, H. Cattle, Ed., Royal Meteorological Society, 17−43.
Wallace, J. M., T. P. Mitchell, and C. Deser, 1989: The influence of sea-surface temperature on surface wind in the eastern equatorial Pacific: Seasonal and interannual variability. J. Climate, 2, 1492−1499, https://doi.org/10.1175/1520-0442(1989)002<1492:TIOSST>2.0.CO;2.
Walter, K., U. Luksch, and K. Fraedrich, 2001: A response climatology of idealized midlatitude thermal forcing experiments with and without a storm track. J. Climate, 14, 467−484, https://doi.org/10.1175/1520-0442(2001)014<0467:ARCOIM>2.0.CO;2.
Wang, J. B., L. Fan, and Q. Y. Liu, 2010: Relationship between North Pacific SST anomalies and the atmospheric circulation anomalies in January 2008. Journal of Ocean University of China, 9, 11−15, https://doi.org/10.1007/s11802-010-0011-2.
Wang, Y. X., X. Y. Yang, and J. Y. Hu, 2016: Position variability of the Kuroshio Extension sea surface temperature front. Acta Oceanologica Sinica, 35, 30−35, https://doi.org/10.1007/s13131-016-0909-7.
Wen, N., Z. Y. Liu, Q. Y. Liu, and C. Frankignoul, 2010: Observed atmospheric responses to global SST variability modes: A unified assessment using GEFA. J. Climate, 23, 1739−1759, https://doi.org/10.1175/2009JCLI3027.1.
Williams, R. G., C. Wilson, and C. W. Hughes, 2007: Ocean and atmosphere storm tracks: The role of eddy vorticity forcing. J. Phys. Oceanogr., 37, 2267−2289, https://doi.org/10.1175/JPO3120.1.
Willison, J., W. A. Robinson, and G. M. Lackmann, 2015: North Atlantic storm-track sensitivity to warming increases with model resolution. J. Climate, 28, 4513−4524, https://doi.org/10.1175/JCLI-D-14-00715.1.
Wills, S. M., and D. W. J. Thompson, 2018: On the observed relationships between wintertime variability in Kuroshio-Oyashio Extension sea surface temperatures and the atmospheric circulation over the North Pacific. J. Climate, 31, 4669−4681, https://doi.org/10.1175/JCLI-D-17-0343.1.
Wilson, C., B. Sinha, and R. G. Williams, 2009: The effect of ocean dynamics and orography on atmospheric storm tracks. J. Climate, 22, 3689−3702, https://doi.org/10.1175/2009JCLI2651.1.
Woollings, T., B. Hoskins, M. Blackburn, D. Hassell, and K. Hodges, 2010: Storm track sensitivity to sea surface temperature resolution in a regional atmosphere model. Climate Dyn., 35, 341−353, https://doi.org/10.1007/s00382-009-0554-3.
Wu, Y. T., M. Ting, R. Seager, H. P. Huang, and M. A. Cane, 2011: Changes in storm tracks and energy transports in a warmer climate simulated by the GFDL CM2.1 model. Climate Dyn., 37, 53−72, https://doi.org/10.1007/s00382-010-0776-4.
Xie, S. P., 2004: Satellite observations of cool ocean-atmosphere interaction. Bull. Amer. Meteor. Soc., 85, 195−208, https://doi.org/10.1175/BAMS-85-2-195.
Xie, S. P., T. Kunitani, A. Kubokawa, M. Nonaka, and S. Hosoda, 2000: Interdecadal thermocline variability in the North Pacific for 1958−97: A GCM simulation. J. Phys. Oceanogr., 30, 2798−2813, https://doi.org/10.1175/1520-0485(2000)030<2798:ITVITN>2.0.CO;2.
Xu, H. M., M. M. Xu, S. P. Xie, and Y. Q. Wang, 2011: Deep atmospheric response to the spring Kuroshio over the East China Sea. J. Climate, 24, 4959−4972, https://doi.org/10.1175/JCLI-D-10-05034.1.
Yao, Y., Z. Zhong, and X. Q. Yang, 2016: Numerical experiments of the storm track sensitivity to oceanic frontal strength within the Kuroshio/Oyashio Extensions. J. Geophys. Res.: Atmos., 121, 2888−2900, https://doi.org/10.1002/2015JD024381.
Yao, Y., Z. Zhong, and X. Q. Yang, 2018: Impacts of the subarctic frontal zone on the North Pacific storm track in the cold season: An observational study. International Journal of Climatology, 38, 2554−2564, https://doi.org/10.1002/joc.5429.
Yao, Y., Z. Zhong, X. Q. Yang, and X. G. Huang, 2019: Seasonal variations of the relationship between the North Pacific storm track and the meridional shifts of the subarctic frontal zone. Theor. Appl. Climatol., 136, 1249−1257, https://doi.org/10.1007/s00704-018-2559-5.
Yasuda, I., 2003: Hydrographic structure and variability in the Kuroshio-Oyashio transition area. Journal of Oceanography, 59, 389−402, https://doi.org/10.1023/A:1025580313836.
Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32, L18701, https://doi.org/10.1029/2005GL023684.
Yuan, L., and Z. N. Xiao, 2018: Impact of the Kuroshio Extension oceanic front on autumn and winter surface air temperatures over North America. Journal of Ocean University of China, 17, 713−720, https://doi.org/10.1007/s11802-018-3468-z.
Yuan, X. J., and L. D. Talley, 1996: The subarctic frontal zone in the North Pacific: Characteristics of frontal structure from climatological data and synoptic surveys. J. Geophys. Res.: Oceans, 101, 16 491−16 508, https://doi.org/10.1029/96JC01249.
Zhai, X. M., and R. J. Greatbatch, 2006: Surface eddy diffusivity for heat in a model of the northwest Atlantic Ocean. Geophys. Res. Lett., 33, L24611, https://doi.org/10.1029/2006GL028712.
Zhang, C., H. L. Liu, C. Y. Li, and P. F. Lin, 2019a: Impacts of mesoscale sea surface temperature anomalies on the meridional shift of North Pacific storm track. International Journal of Climatology, 39, 5124−5139, https://doi.org/10.1002/joc.6130.
Zhang, C., H. L. Liu, J. B. Xie, C. Y. Li, and P. F. Lin, 2020a: Impacts of increased SST resolution on the North Pacific storm track in ERA-Interim. Adv. Atmos. Sci., 37, 1256−1266, https://doi.org/10.1007/s00376-020-0072-0.
Zhang, C. H., H. L. Li, S. T. Liu, L. J. Shao, Z. Zhao, and H. W. Liu, 2015: Automatic detection of oceanic eddies in reanalyzed SST images and its application in the East China Sea. Science China Earth Sciences, 58, 2249−2259, https://doi.org/10.1007/s11430-015-5101-y.
Zhang, C., H. L. Liu, J. B. Xie, P. F. Lin, C. Y. Li, Q. Yang, and J. Song, 2020b: North Pacific storm track response to the mesoscale SST in a global high-resolution atmospheric model. Climate Dyn., 55, 1597−1611, https://doi.org/10.1007/s00382-020-05343-x.
Zhang, J., and D. H. Luo, 2017: Impact of Kuroshio Extension dipole mode variability on the North Pacific storm track. Atmos. Ocean. Sci. Lett., 10, 389−396, https://doi.org/10.1080/16742834.2017.1351864.
Zhang, X., M. Mu, Q. Wang, and S. Pierini, 2017: Optimal precursors triggering the Kuroshio Extension state transition obtained by the conditional nonlinear optimal perturbation approach. Adv. Atmos. Sci., 34, 685−699, https://doi.org/10.1007/s00376-017-6263-7.
Zhang, X. Z., X. H. Ma, and L. X. Wu, 2019b: Effect of mesoscale oceanic eddies on extratropical cyclogenesis: A tracking approach. J. Geophys. Res.: Atmos., 124, 6411−6422, https://doi.org/10.1029/2019JD030595.
Zhou, G. D., 2019: Atmospheric response to sea surface temperature anomalies in the mid-latitude oceans: A brief review. Atmos.-Ocean, 57, 319−328, https://doi.org/10.1080/07055900.2019.1702499.
Zhou, G. D., M. Latif, R. J. Greatbatch, and W. Park, 2015: Atmospheric response to the North Pacific enabled by daily sea surface temperature variability. Geophys. Res. Lett., 42, 7732−7739, https://doi.org/10.1002/2015GL065356.
Zhou, G. D., M. Latif, R. J. Greatbatch, and W. Park, 2017: State dependence of atmospheric response to extratropical North Pacific SST anomalies. J. Climate, 30, 509−525, https://doi.org/10.1175/JCLI-D-15-0672.1.