Blackport, R., and J. A. Screen, 2020: Insignificant effect of Arctic amplification on the amplitude of midlatitude atmospheric waves. Science Advances, 6, eaay2880, https://doi.org/10.1126/sciadv.aay2880.
Chen, J., A. G. Dai, and Y. C. Zhang, 2019: Projected changes in daily variability and seasonal cycle of near-surface air temperature over the globe during the twenty-first century. J. Climate, 32, 8537−8561, https://doi.org/10.1175/JCLI-D-19-0438.1.
Chung, E.-S., K.-J. Ha, A. Timmermann, M. F. Stuecker, T. Bodai, and S.-K. Lee, 2021: Cold-season Arctic amplification driven by Arctic ocean-mediated seasonal energy transfer. Earth's Future, 9, e2020EF001898, https://doi.org/10.1029/2020EF001898.
Dai, A. G., 2022: Arctic amplification is the main cause of the Atlantic meridional overturning circulation weakening under large CO2 increases. Climate Dyn., 58, 3243−3259, https://doi.org/10.1007/s00382-021-06096-x.
Dai, A. G., and M. R. Song, 2020: Little influence of Arctic amplification on mid-latitude climate. Nature Climate Change, 10(3), 231−237, https://doi.org/10.1038/s41558-020-0694-3.
Dai, A. G., and J. C. Deng, 2021: Arctic amplification weakens the variability of daily temperatures over northern middle-high latitudes. J. Climate, 34, 2591−2609, https://doi.org/10.1175/JCLI-D-20-0514.1.
Dai, A. G., and J. C. Deng, 2022: Recent Eurasian winter cooling partly caused by internal multidecadal variability amplified by Arctic sea ice-air interactions. Climate Dyn., 58, 3261−3277, https://doi.org/10.1007/s00382-021-06095-y.
Dai, A. G., D. H. Luo, M. R. Song, and J. P. Liu, 2019: Arctic amplification is caused by sea-ice loss under increasing CO2. Nature Communications, 10, 121, https://doi.org/10.1038/s41467-018-07954-9.
Dai, H. J., 2021: Roles of surface albedo, surface temperature and carbon dioxide in the seasonal variation of Arctic amplification. Geophys. Res. Lett., 48, e2020GL090301, https://doi.org/10.1029/2020GL090301.
Dai, H. J., H. J. Yang, and J. Yin, 2017: Roles of energy conservation and climate feedback in Bjerknes compensation: A coupled modeling study. Climate Dyn., 49, 1513−1529, https://doi.org/10.1007/s00382-016-3386-y.
Dai, H. J., J. Zhao, Q. Yao, and X. Y. Zhang, 2021: The seesaw of seasonal precipitation variability between North China and the southwest United States: A response to Arctic amplification. J. Geophys. Res., 126, e2020JD034039, https://doi.org/10.1029/2020JD034039.
Deng, J. C., and A. G. Dai, 2022: Sea ice–air interactions amplify multidecadal variability in the North Atlantic and Arctic region. Nature Communications, 13, 2100, https://doi.org/10.1038/s41467-022-29810-7.
Goosse, H., and Coauthors, 2018: Quantifying climate feedbacks in polar regions. Nature Communications, 9, 1919, https://doi.org/10.1038/s41467-018-04173-0.
Graversen, R. G., P. L. Langen, and T. Maurttsen, 2014: Polar amplification in CCSM4: Contributions from the lapse rate and surface albedo feedbacks. J. Climate, 27, 4433−4450, https://doi.org/10.1175/JCLI-D-13-00551.1.
He, S. P., E. M. Knudsen, D. W. J. Thompson, and T. Furevik, 2018: Evidence for predictive skill of high-latitude climate due to midsummer sea jce extent anomalies. Geophys. Res. Lett., 45(17), 9114−9122, https://doi.org/10.1029/2018GL078281.
Held, I. M., and A. Y. Hou, 1980: Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci., 37, 515−533, https://doi.org/10.1175/1520-0469(1980)037<0515:NASCIA>2.0.CO;2.
Huang, Y., Y. Xia, and X. X. Tan, 2017: On the pattern of CO2 radiative forcing and poleward energy transport. J. Geophys. Res., 122, 10 578−10 593,
Hunke, E. C., and W. H. Lipscomb, 2008: CICE: The los Alamos sea ice model documentation and software user’s manual, version 4.1. Tech. Rep. LA-CC-06-012, Los Alamos National Laboratory, Los Alamos, NM.
Hurrell, J. W., and Coauthors, 2013: The community earth system model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94(9), 1339−1360, https://doi.org/10.1175/BAMS-D-12-00121.1.
Forster, P., Coauthors, 2021: Chapter 7: The Earth’s energy budget, climate feedbacks, and climate sensitivity. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Chang, V. Masson-Delmotte et al., Eds., Cambridge University Press.
Jenkins, M., and A. G. Dai, 2021: The impact of sea-ice loss on Arctic climate feedbacks and their role for Arctic amplification. Geophys. Res. Lett., 48(15), e2021GL094599, https://doi.org/10.1029/2021GL094599.
Lawrence, D. M., K. W. Oleson, M. G. Flanner, C. G. Fletcher, P. J. Lawrence, S. Levis, S. C. Swenson, and G. B. Bonan, 2012: The CCSM4 land simulation, 1850–2005: Assessment of surface climate and new capabilities. J. Climate, 25, 2240−2260, https://doi.org/10.1175/JCLI-D-11-00103.1.
Lu, J., G. A. Vecchi, and T. Reichler, 2007: Expansion of the Hadley cell under global warming. Geophys. Res. Lett., 34, L06805, https://doi.org/10.1029/2006GL028443.
Neale, R. B., and Coauthors, 2012: Description of the NCAR community atmosphere model (CAM 5.0). No. NCAR/TN-486+STR,
Pithan, F., and T. Mauritsen, 2014: Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nature Geoscience, 7, 181−184, https://doi.org/10.1038/ngeo2071.
Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464(7293), 1334−1337, https://doi.org/10.1038/nature09051.
Serreze, M. C., and J. A. Francis, 2006: The Arctic amplification debate. Climatic Change, 76, 241−264, https://doi.org/10.1007/s10584-005-9017-y.
Shin, Y., and S. M. Kang, 2021: How does the high-latitude thermal forcing in one hemisphere affect the other hemisphere. Geophys. Res. Lett., 48(24), e2021GL095870, https://doi.org/10.1029/2021GL095870.
Smith, R., and Coauthors, 2010: The parallel ocean program (POP) reference manual: Ocean component of the community climate system model (CCSM). Tech. Rep. LAUR-10-01853, Los Alamos National Laboratory, Los Alamos, NM.
Stuecker, M. F., and Coauthors, 2018: Polar amplification dominated by local forcing and feedbacks. Nature Climate Change, 8, 1076−1081, https://doi.org/10.1038/s41558-018-0339-y.
Walsh, J. E., 2014: Intensified warming of the Arctic: Causes and impacts on middle latitudes. Global and Planetary Change, 117, 52−63, https://doi.org/10.1016/j.gloplacha.2014.03.003.
Yang, H. J., and J. Zhu, 2011: Equilibrium thermal response timescale of global oceans. Geophys. Res. Lett., 38, L14711, https://doi.org/10.1029/2011GL048076.
Yang, H. J., and H. J. Dai, 2015: Effect of wind forcing on the meridional heat transport in a coupled climate model: Equilibrium response. Climate Dyn., 45, 1451−1470, https://doi.org/10.1007/s00382-014-2393-0.
Yang, H. J., Q. Li, K. Wang, Y. Sun, and D. X. Sun, 2015: Decomposing the meridional heat transport in the climate system. Climate Dyn., 44, 2751−2768, https://doi.org/10.1007/s00382-014-2380-5.
Yang, Q. Z., Y. Y. Zhao, Q. Wen, J. Yao, and H. J. Yang, 2018: Understanding Bjerknes compensation in meridional heat transports and the role of freshwater in a warming climate. J. Climate, 31(12), 4791−4806, https://doi.org/10.1175/JCLI-D-17-0587.1.