Adler, R. F., and Coauthors, 2018: The global precipitation climatology project (GPCP) monthly analysis (new version 2.3) and a review of 2017 global precipitation. Atmosphere, 9, 138, https://doi.org/10.3390/atmos9040138.
Bechtold, P., J.-P. Chaboureau, A. Beljaars, A. K. Betts, M. Köhler, M. Miller, and J.-L. Redelsperger, 2004: The simulation of the diurnal cycle of convective precipitation over land in a global model. Quart. J. Roy. Meteor. Soc., 130, 3119−3137, https://doi.org/10.1256/qj.03.103.
Bechtold, P., N. Semane, P. Lopez, J.-P. Chaboureau, A. Beljaars, and N. Bormann, 2014: Representing equilibrium and nonequilibrium convection in large-scale models. J. Atmos. Sci., 71, 734−753, https://doi.org/10.1175/JAS-D-13-0163.1.
Bretherton, C. S., and S. Park, 2009: A new moist turbulence parameterization in the community atmosphere model. J. Climate, 22, 3422−3448, https://doi.org/10.1175/2008JCLI2556.1.
Chen, C.-C., J. H. Richter, C. Liu, M. W. Moncrieff, Q. Tang, W. Lin, S. Xie, and P. J. Rasch, 2021: Effects of organized convection parameterization on the MJO and precipitation in E3SMv1. Part I: Mesoscale heating. Journal of Advances in Modeling Earth Systems, 13, e2020MS002401, https://doi.org/10.1029/2020MS002401.
Chen, D., and A. G. Dai, 2018: Dependence of estimated precipitation frequency and intensity on data resolution. Climate Dyn., 50, 3625−3647, https://doi.org/10.1007/s00382-017-3830-7.
Chen, H. M., W. H. Yuan, J. Li, and R. C. Yu, 2012: A possible cause for different diurnal variations of warm season rainfall as shown in station observations and TRMM 3B42 data over the southeastern Tibetan plateau. Adv. Atmos. Sci., 29, 193−200, https://doi.org/10.1007/s00376-011-0218-1.
Chu, W. C., Y. L. Lin, and M. Zhao, 2022: Implementation and evaluation of a double-plume convective parameterization in NCAR CAM5. J. Climate, 35, 617−637, https://doi.org/10.1175/JCLI-D-21-0267.1.
Collins, W. D., and Coauthors, 2004: Description of the NCAR community atmosphere model (CAM 3.0). NCAR/TN-464+STR, 214 pp.
Covey, C., P. J. Gleckler, C. Doutriaux, D. N. Williams, A. G. Dai, J. Fasullo, K. Trenberth, and A. Berg, 2016: Metrics for the diurnal cycle of precipitation: Toward routine benchmarks for climate models. J. Climate, 29, 4461−4471, https://doi.org/10.1175/JCLI-D-15-0664.1.
Cui, Z. Y., G. J. Zhang, Y. Wang, and S. C. Xie, 2021: Understanding the roles of convective trigger functions in the diurnal cycle of precipitation in the NCAR CAM5. J. Climate, 34, 6473−6489, https://doi.org/10.1175/jcli-d-20-0699.1.
Dai, A. G., 2001: Global precipitation and thunderstorm frequencies. Part II: Diurnal variations. J. Climate, 14, 1112−1128, https://doi.org/10.1175/1520-0442(2001)014<1112:GPATFP>2.0.CO;2.
Dai, A. G., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 4605−4630, https://doi.org/10.1175/JCLI3884.1.
Ding, Y. H., and J. C. L. Chan, 2005: The East Asian summer monsoon: An overview. Meteorol. Atmos. Phys., 89, 117−142, https://doi.org/10.1007/s00703-005-0125-z.
Eyring, V., and Coauthors, 2021: Human influence on the climate system. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Masson-Delmotte et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 423−552, doi: 10.1017/9781109157896.005.
Flato, G., and Coauthors, 2013: Evaluation of climate models. In: Climate change 2013: the physical science basis. [Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds)], Cambridge University Press, Cambridge, New York, 741–866.
Gettelman, A., and Coauthors, 2010: Global simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the Community Atmosphere Model. J. Geophys. Res, 115, D18216, https://doi.org/10.1029/2009JD013797.
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999−2049, https://doi.org/10.1002/qj.3803.
Huang, D.-Q., J. Zhu, Y.-C. Zhang, and A.-N. Huang, 2013: Uncertainties on the simulated summer precipitation over Eastern China from the CMIP5 models. J. Geophys. Res., 118, 9035−9047, https://doi.org/10.1002/jgrd.50695.
Huffman, G., D. Bolvin, D. Braithwaite, K. Hsu, and R. Joyce, 2018: Algorithm theoretical basis document (ATBD) NASA global precipitation measurement (GPM) integrated Multi-satellitE retrievals for GPM (IMERG). NASA, 29 pp.
Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.
Kain, J. S., 2004: The Kain - Fritsch convective parameterization: An update. J. Appl. Meteorol., 43, 170−181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.
Li, J., R. C. Yu, W. H. Yuan, H. M. Chen, W. Sun, and Y. Zhang, 2015: Precipitation over East Asia simulated by NCAR CAM5 at different horizontal resolutions. Journal of Advances in Modeling Earth Systems, 7, 774−790, https://doi.org/10.1002/2014MS000414.
Li, J. H., and Y. Zhang, 2022: Enhancing the stability of a global model by using an adaptively implicit vertical moist transport scheme. Meteorol. Atmos. Phys., 134, 55, https://doi.org/10.1007/s00703-022-00895-5.
Li, X. H., Y. Zhang, X. D. Peng, and J. Li, 2020: Using a single column model (SGRIST1.0) for connecting model physics and dynamics in the Global-to-Regional Integrated forecast SysTem (GRIST-A20.8). Geoscientific Model Development Discussions, in press, https://doi.org/10.5194/gmd-2020-254.
Li, X. H., Y. Zhang, X. D. Peng, W. C. Chu, Y. L. Lin, and J. Li, 2022: Improved climate simulation by using a double-plume convection scheme in a global model. J. Geophys. Res., 127, e2021JD036069, https://doi.org/10.1029/2021JD036069.
Lin, C. G., D. L. Chen, K. Yang, and T. H. Ou, 2018: Impact of model resolution on simulating the water vapor transport through the central Himalayas: Implication for models’ wet bias over the Tibetan Plateau. Climate Dyn., 51, 3195−3207, https://doi.org/10.1007/s00382-018-4074-x.
Lin, L., A. Gettelman, Y. Y. Xu, C. L. Wu, Z. L. Wang, N. Rosenbloom, S. C. Bates, and W. J. Dong, 2019: CAM6 simulation of mean and extreme precipitation over Asia: Sensitivity to upgraded physical parameterizations and higher horizontal resolution. Geoscientific Model Development, 12, 3773−3793, https://doi.org/10.5194/gmd-12-3773-2019.
Liu, Z., Y. Zhang, X. M. Huang, J. Li, D. Wang, M. Q. Wang, and X. Huang, 2020: Development and performance optimization of a parallel computing infrastructure for an unstructured-mesh modelling framework. Geoscientific Model Development Discussions, in press, https://doi.org/10.5194/gmd-2020-158.
Muetzelfeldt, M. R., R. Schiemann, A. G. Turner, N. P. Klingaman, P. L. Vidale, and M. J. Roberts, 2021: Evaluation of Asian summer precipitation in different configurations of a high-resolution general circulation model in a range of decision-relevant spatial scales. Hydrology and Earth System Sciences, 25, 6381−6405, https://doi.org/10.5194/hess-25-6381-2021.
Neale, R. B., J. H. Richter, and M. Jochum, 2008: The impact of convection on ENSO: From a delayed oscillator to a series of events. Journal of Climate, 21(22), 5904−5924, https://doi.org/10.1175/2008JCLI2244.1.
Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139.
Park, S., and C. S. Bretherton, 2009: The university of washington shallow convection and moist turbulence schemes and their impact on climate simulations with the community atmosphere model. J. Climate, 22, 3449−3469, https://doi.org/10.1175/2008JCLI2557.1.
Park, S., C. S. Bretherton, and P. J. Rasch, 2014: Integrating cloud processes in the community atmosphere model, version 5. J. Climate, 27, 6821−6856, https://doi.org/10.1175/JCLI-D-14-00087.1.
Rio, C., A. D. Del Genio, and F. Hourdin, 2019: Ongoing breakthroughs in convective parameterization. Current Climate Change Reports, 5, 95−111, https://doi.org/10.1007/s40641-019-00127-w.
Song, F. F., and G. J. Zhang, 2017: Improving trigger functions for convective parameterization schemes using GOAmazon observations. J. Climate, 30, 8711−8726, https://doi.org/10.1175/JCLI-D-17-0042.1.
Tang, Q., and Coauthors, 2019: Regionally refined test bed in E3SM atmosphere model version 1 (EAMv1) and applications for high-resolution modeling. Geoscientific Model Development, 12, 2679−2706, https://doi.org/10.5194/gmd-12-2679-2019.
Tang, S. Q., P. Gleckler, S. C. Xie, J. Lee, M.-S. Ahn, C. Covey, and C. Z. Zhang, 2021: Evaluating the diurnal and semidiurnal cycle of precipitation in CMIP6 models using satellite- and ground-based observations. J. Climate, 34, 3189−3210, https://doi.org/10.1175/jcli-d-20-0639.1.
Taylor, K. E., D. L. Williamson, and F. Zwiers, 2000: The sea surface temperature and sea-ice concentration boundary conditions for AMIP II simulations. PCMDI Report No. 60, 25 pp.
Wang, J. Y., and D. A. Randall, 1994: The moist available energy of a conditionally unstable atmosphere. Part II: Further analysis of GATE data. J. Atmos. Sci., 51, 703−710, https://doi.org/10.1175/1520-0469(1994)051<0703:TMAEOA>2.0.CO;2.
Wang, L., Y. Zhang, J. Li, Z. Liu, and Y. H. Zhou, 2019: Understanding the performance of an unstructured-mesh global shallow water model on kinetic energy spectra and nonlinear vorticity dynamics. Journal of Meteorological Research, 33, 1075−1097, https://doi.org/10.1007/s13351-019-9004-2.
Wang, Y., G. J. Zhang, and Y. Q. Jiang, 2018: Linking stochasticity of convection to large-scale vertical velocity to improve Indian Summer Monsoon simulation in the NCAR CAM5. J. Climate, 31, 6985−7002, https://doi.org/10.1175/JCLI-D-17-0785.1.
Wu, T. W., and Coauthors, 2019: The Beijing climate center climate system model (BCC-CSM): The main progress from CMIP5 to CMIP6. Geoscientific Model Development, 12, 1573−1600, https://doi.org/10.5194/gmd-12-1573-2019.
Xie, S. C., and M. H. Zhang, 2000: Impact of the convection triggering function on single-column model simulations. J. Geophys. Res., 105, 14 983−14 996, https://doi.org/10.1029/2000JD900170.
Xie, S. C., and Coauthors, 2019: Improved diurnal cycle of precipitation in E3SM with a revised convective triggering function. Journal of Advanceds Modeling Earth Systems, 11, 2290−2310, https://doi.org/10.1029/2019MS001702.
Xin, X. G., T. W. Wu, J. Zhang, J. C. Yao, and Y. J. Fang, 2020: Comparison of CMIP6 and CMIP5 simulations of precipitation in China and the East Asian summer monsoon. International Journal of Climatology, 40, 6423−6440, https://doi.org/10.1002/joc.6590.
Yang, G.-Y., and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129, 784−801, https://doi.org/10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2.
Yu, R. C., T. J. Zhou, A. Y. Xiong, Y. J. Zhu, and J. M. Li, 2007: Diurnal variations of summer precipitation over contiguous China. Geophys. Res. Lett., 34, L01704, https://doi.org/10.1029/2006GL028129.
Yu, R. C., J. Li, Y. Zhang, and H. M. Chen, 2015: Improvement of rainfall simulation on the steep edge of the Tibetan Plateau by using a finite-difference transport scheme in CAM5. Climate Dyn., 45, 2937−2948, https://doi.org/10.1007/s00382-015-2515-3.
Yuan, W. H., R. C. Yu, M. H. Zhang, W. Y. Lin, J. Li, and Y. F. Fu, 2013: Diurnal cycle of summer precipitation over subtropical East Asia in CAM5. J. Climate, 26, 3159−3172, https://doi.org/10.1175/JCLI-D-12-00119.1.
Zhang, G. J., 2002: Convective quasi-equilibrium in midlatitude continental environment and its effect on convective parameterization. J. Geophys. Res., 107, 4220, https://doi.org/10.1029/2001JD001005.
Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the canadian climate centre general circulation model. Atmosphere-Ocean, 33, 407−446, https://doi.org/10.1080/07055900.1995.9649539.
Zhang, Y., and H. M. Chen, 2016: Comparing CAM5 and superparameterized CAM5 simulations of summer precipitation characteristics over continental East Asia: Mean state, frequency-intensity relationship, diurnal cycle, and influencing factors. J. Climate, 29, 1067−1089, https://doi.org/10.1175/JCLI-D-15-0342.1.
Zhang, Y., and J. Li, 2016: Impact of moisture divergence on systematic errors in precipitation around the Tibetan Plateau in a general circulation model. Climate Dyn., 47, 2923−2934, https://doi.org/10.1007/s00382-016-3005-y.
Zhang, Y., J. Li, R. C. Yu, S. X. Zhang, Z. Liu, J. H. Huang, and Y. H. Zhou, 2019: A layer-averaged nonhydrostatic dynamical framework on an unstructured mesh for global and regional atmospheric modeling: Model description, baseline evaluation, and sensitivity exploration. Journal of Advances in Modeling Earth Systems, 11, 1685−1714, https://doi.org/10.1029/2018MS001539.
Zhang, Y., J. Li, R. C. Yu, Z. Liu, Y. H. Zhou, X. H. Li, and X. M. Huang, 2020: A multiscale dynamical model in a dry-mass coordinate for weather and climate modeling: Moist dynamics and its coupling to physics. Monthly Weather Review, 148, 2671−2699, https://doi.org/10.1175/MWR-D-19-0305.1.
Zhang, Y., R. C. Yu, J. Li, X. H. Li, X. Y. Rong, X. D. Peng, and Y. H. Zhou, 2021: AMIP simulations of a global model for unified weather-climate forecast: Understanding precipitation characteristics and sensitivity over East Asia. Journal of Advanceds in Modeling Earth Systems, 13, e2021MS002592, https://doi.org/10.1029/2021ms002592.
Zhang, Y., X. H. Li, Z. Liu, X. Y. Rong, J. Li, Y. H. Zhou, and S. Y. Chen, 2022: Resolution sensitivity of the GRIST nonhydrostatic model from 120 to 5 km (3.75 km) during the DYAMOND winter. Earth and Space Science, 9, e2022EA002401, https://doi.org/10.1029/2022EA002401.
Zhang, Y. Y., and S. A. Klein, 2010: Mechanisms affecting the transition from shallow to deep convection over land: inferences from observations of the diurnal cycle collected at the ARM southern great plains site. Journal of the Atmospheric Sciences, 67, 2943−2959, https://doi.org/10.1175/2010JAS3366.1.
Zhou, Y. H., Y. Zhang, J. Li, R. C. Yu, and Z. Liu, 2020: Configuration and evaluation of a global unstructured mesh atmospheric model (GRIST-A20.9) based on the variable-resolution approach. Geoscientific Model Development, 13, 6325−6348, https://doi.org/10.5194/gmd-13-6325-2020.