Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N.-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 2205−2231, https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.
Bishop, S. P., F. O. Bryan, and R. J. Small, 2015: Bjerknes-like compensation in the wintertime North Pacific. J. Phys. Oceanogr., 45, 1339−1355, https://doi.org/10.1175/JPO-D-14-0157.1.
Blackmon, M. L., 1976: A climatological spectral study of the 500 mb geopotential height of the Northern Hemisphere. J. Atmos. Sci., 33, 1607−1623, https://doi.org/10.1175/1520-0469(1976)033<1607:ACSSOT>2.0.CO;2.
Cai, M., S. Yang, H. M. Van Den Dool, and V. E. Kousky, 2007: Dynamical implications of the orientation of atmospheric eddies: A local energetics perspective. Tellus A: Dynamic Meteorology and Oceanography, 59, 127−140, https://doi.org/10.1111/j.1600-0870.2006.00213.x.
Chang, E. K. M., 1993: Downstream development of baroclinic waves as inferred from regression Analysis. J. Atmos. Sci., 50, 2038−2053, https://doi.org/10.1175/1520-0469(1993)050<2038:DDOBWA>2.0.CO;2.
Chang, E. K. M., and Y. F. Fu, 2002: Interdecadal variations in Northern Hemisphere winter storm track intensity. J. Climate, 15, 642−658, https://doi.org/10.1175/1520-0442(2002)015<0642:IVINHW>2.0.CO;2.
Chen, L. L., J. B. Fang, and X.-Q. Yang, 2020: Midlatitude unstable air-sea interaction with atmospheric transient eddy dynamical forcing in an analytical coupled model. Climate Dyn., 55, 2557−2577, https://doi.org/10.1007/s00382-020-05405-0.
Chen, S. M., 2008: The Kuroshio Extension Front from satellite sea surface temperature measurements. Journal of Oceanography, 64, 891−897, https://doi.org/10.1007/s10872-008-0073-6.
Chu, C. J., H. B. Hu, X.-Q. Yang, and D. J. Yang, 2020: Midlatitude atmospheric transient eddy feedbacks influenced ENSO-associated wintertime Pacific teleconnection patterns in two PDO phases. Climate Dyn., 54, 2577−2595, https://doi.org/10.1007/s00382-020-05134-4.
Czaja, A., and C. Frankignoul, 2002: Observed impact of Atlantic SST anomalies on the North Atlantic Oscillation. J. Climate, 15, 606−623, https://doi.org/10.1175/1520-0442(2002)015<0606:OIOASA>2.0.CO;2.
Dai, X. L., Y. Zhang, and X.-Q. Yang, 2021: The budget of local available potential energy of low-frequency eddies in Northern Hemispheric winter. J. Climate, 34, 1241−1258, https://doi.org/10.1175/JCLI-D-19-1007.1.
Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553−597, https://doi.org/10.1002/qj.828.
Deser, C., R. A. Tomas, and S. L. Peng, 2007: The transient atmospheric circulation response to North Atlantic SST and sea ice anomalies. J. Climate, 20, 4751−4767, https://doi.org/10.1175/JCLI4278.1.
Dong, C. M., J. C. McWilliams, Y. Liu, and D. K. Chen, 2014: Global heat and salt transports by eddy movement. Nature Communication, 5, 3294, https://doi.org/10.1038/ncomms4294.
Ducet, N., P. Y. Le Traon, and G. Reverdin, 2000: Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2,. J. Geophys. Res.: Oceans, 105, 19477−19498, https://doi.org/10.1029/2000JC900063.
Fang, J. B., and X.-Q. Yang, 2016: Structure and dynamics of decadal anomalies in the wintertime midlatitude North Pacific ocean–atmosphere system. Climate Dyn., 47, 1989−2007, https://doi.org/10.1007/s00382-015-2946-x.
Feng, S. H., D. H. Luo, and L. H. Zhong, 2015: The relationship between mesoscale eddies in the Kuroshio Extension region and storm tracks in the North Pacific. Chinese Journal of Atmospheric Sciences, 39, 861−874. (in Chinese with English abstract)
Ferreira, D., and C. Frankignoul, 2005: The transient atmospheric response to midlatitude SST anomalies. J. Climate, 18, 1049−1067, https://doi.org/10.1175/JCLI-3313.1.
Frankignoul, C., and N. Sennéchael, 2007: Observed influence of North Pacific SST anomalies on the atmospheric circulation. J. Climate, 20, 592−606, https://doi.org/10.1175/JCLI4021.1.
Frankignoul, C., N. Sennéchael, Y.-O. Kwon, and M. A. Alexander, 2011: Influence of the meridional shifts of the Kuroshio and the Oyashio Extensions on the atmospheric circulation. J. Climate, 24, 762−777, https://doi.org/10.1175/2010JCLI3731.1.
Gan, B. L., and L. X. Wu, 2014: Centennial trends in Northern Hemisphere winter storm tracks over the twentieth century. Quart. J. Roy. Meteor. Soc., 140, 1945−1957, https://doi.org/10.1002/qj.2263.
Heo, K.-Y., K.-J. Ha, and S.-S. Lee, 2012: Warming of western North Pacific Ocean and energetics of transient eddy activity. Mon. Wea. Rev., 140, 2860−2873, https://doi.org/10.1175/MWR-D-11-00256.1.
Hotta, D., and H. Nakamura, 2011: On the significance of the sensible heat supply from the ocean in the maintenance of the mean baroclinicity along storm tracks. J. Climate, 24, 3377−3401, https://doi.org/10.1175/2010JCLI3910.1.
Huang, J., Y. Zhang, X.-Q. Yang, X. J. Ren, and H. B. Hu, 2020: Impacts of North Pacific subtropical and subarctic oceanic frontal zones on the wintertime atmospheric large-scale circulations. J. Climate, 33, 1897−1914, https://doi.org/10.1175/JCLI-D-19-0308.1.
Itoh, S., and I. Yasuda, 2010: Characteristics of mesoscale eddies in the Kuroshio–Oyashio Extension region detected from the distribution of the sea surface height anomaly. J. Phys. Oceanogr., 40, 1018−1034, https://doi.org/10.1175/2009JPO4265.1.
Jiang, Z. H., Y. Z. Wu, Z. Y. Liu, N. Wen, and C. Zhao, 2015: A diagnostic analysis of air temperature anomaly mode over China in 2009/2010 winter based on generalized equilibrium feedback assessment (GEFA) method. Journal of Tropical Meteorology, 21, 121−130, https://doi.org/10.16555/j.1006-8775.2015.02.003.
Judge, G. G., R. C. Hill, W. E. Griffiths, H. Lütkepohl, and T.-C. Lee, 1988: Introduction to the Theory and Practice of Econometrics. 2nd ed., John Wiley and Sons, 1056 pp.
Kendall, M. G., 1946: The Advanced Theory of Statistics. Charles Griffin and Co, 521 pp.
Kida, S., and Coauthors, 2015: Oceanic fronts and jets around Japan: A review. Journal of Oceanography, 71, 469−497, https://doi.org/10.1007/s10872-015-0283-7.
Kwon, Y.-O., and T. M. Joyce, 2013: Northern Hemisphere winter atmospheric transient eddy heat fluxes and the Gulf Stream and Kuroshio–Oyashio Extension variability. J. Climate, 26, 9839−9859, https://doi.org/10.1175/JCLI-D-12-00647.1.
Kwon, Y.-O., M. A. Alexander, N. A. Bond, C. Frankignoul, H. Nakamura, B. Qiu, and L. A. Thompson, 2010: Role of the Gulf Stream and Kuroshio–Oyashio systems in large-scale atmosphere–ocean interaction: A review. J. Climate, 23, 3249−3281, https://doi.org/10.1175/2010jcli3343.1.
Lee, S.-S., J. Y. Lee, B. Wang, K. J. Ha, K. Y. Heo, F. F. Jin, D. M. Straus, and J. Shukla, 2012: Interdecadal changes in the storm track activity over the North Pacific and North Atlantic. Climate Dyn., 39, 313−327, https://doi.org/10.1007/s00382-011-1188-9.
Liu, L., G. H. Wang, Z. Zhang, and H. Z. Wang, 2022: Effects of drag coefficients on surface heat flux during Typhoon Kalmaegi (2014). Adv. Atmos. Sci., 39, 1501−1518, https://doi.org/10.1007/s00376-022-1285-1.
Liu, Z. Y., M. Notaro, J. Kutzbach, and N. Z. Liu, 2006: Assessing global vegetation–climate feedbacks from observations. J. Climate, 19, 787−814, https://doi.org/10.1175/JCLI3658.1.
Liu, Z. Y., N. Wen, and Y. Liu, 2008: On the assessment of nonlocal climate feedback. Part I: The generalized equilibrium feedback assessment. J. Climate, 21, 134−148, https://doi.org/10.1175/2007JCLI1826.1.
Luo, D. H., Y. N. Diao, and S. B. Feldstein, 2011: The variability of the Atlantic storm track and the North Atlantic Oscillation: A link between intraseasonal and interannual variability. J. Atmos. Sci., 68, 577−601, https://doi.org/10.1175/2010JAS3579.1.
Luo, D. H., S. H. Feng, and L. X. Wu, 2016: The eddy-dipole mode interaction and the decadal variability of the Kuroshio Extension system. Ocean Dynamics, 66, 1317−1332, https://doi.org/10.1007/s10236-016-0991-6.
Ma, X. H., P. Chang, R. Saravanan, R. Montuoro, H. Nakamura, D. X. Wu, X. P. Lin, and L. X. Wu, 2017: Importance of resolving Kuroshio front and eddy influence in simulating the North Pacific storm track. J. Climate, 30, 1861−1880, https://doi.org/10.1175/JCLI-D-16-0154.1.
Ma, X., and Coauthors, 2015: Distant influence of Kuroshio eddies on North Pacific weather patterns. Scientific Reports, 5, 17785, https://doi.org/10.1038/srep17785.
Nakamura, H., T. Sampe, A. Goto, W. Ohfuchi, and S.-P. Xie, 2008: On the importance of midlatitude oceanic frontal zones for the mean state and dominant variability in the tropospheric circulation. Geophys. Res. Lett., 35, L15709, https://doi.org/10.1029/2008GL034010.
Ogawa, F., H. Nakamura, K. Nishii, T. Miyasaka, and A. Kuwano-Yoshida, 2012: Dependence of the climatological axial latitudes of the tropospheric westerlies and storm tracks on the latitude of an extratropical oceanic front. Geophys. Res. Lett., 39, L05804, https://doi.org/10.1029/2011GL049922.
O'Reilly, C. H., and A. Czaja, 2015: The response of the Pacific storm track and atmospheric circulation to Kuroshio Extension variability. Quart. J. Roy. Meteor. Soc., 141, 52−66, https://doi.org/10.1002/qj.2334.
Qiu, B., and S. M. Chen, 2005: Variability of the Kuroshio Extension jet, recirculation gyre, and mesoscale eddies on decadal time scales. J. Phys. Oceanogr., 35, 2090−2103, https://doi.org/10.1175/JPO2807.1.
Qiu, B., and S. M. Chen, 2010: Eddy-mean flow interaction in the decadally modulating Kuroshio Extension system. Deep Sea Research Part II: Topical Studies in Oceanography, 57, 1098−1110, https://doi.org/10.1016/j.dsr2.2008.11.036.
Qiu, B., N. Schneider, and S. M. Chen, 2007: Coupled decadal variability in the North Pacific: An observationally constrained idealized model. J. Climate, 20, 3602−3620, https://doi.org/10.1175/JCLI4190.1.
Qiu, B., S. M. Chen, N. Schneider, and B. Taguchi, 2014: A coupled decadal prediction of the dynamic state of the Kuroshio Extension system. J. Climate, 27, 1751−1764, https://doi.org/10.1175/JCLI-D-13-00318.1.
Ren, X. J., X. Q. Yang, B. Han, and G. Y. Xu, 2007: North Pacific storm track variations in winter season and the coupled pattern with the midlatitude atmosphere-ocean system. Chinese Journal of Geophysics, 50, 94−103, https://doi.org/10.1002/cjg2.1014. (in Chinese with English abstract
Révelard, A., C. Frankignoul, and Y.-O. Kwon, 2018: A multivariate estimate of the cold season atmospheric response to North Pacific SST variability. J. Climate, 31, 2771−2796, https://doi.org/10.1175/JCLI-D-17-0061.1.
Révelard, A., C. Frankignoul, N. Sennéchael, Y.-O. Kwon, and B. Qiu, 2016: Influence of the decadal variability of the Kuroshio Extension on the atmospheric circulation in the cold season. J. Climate, 29, 2123−2144, https://doi.org/10.1175/JCLI-D-15-0511.1.
Reynolds, R. W., T. M. Smith, C. Y. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 5473−5496, https://doi.org/10.1175/2007jcli1824.1.
Sampe, T., H. Nakamura, A. Goto, and W. Ohfuchi, 2010: Significance of a midlatitude SST frontal zone in the formation of a storm track and an eddy-driven westerly jet. J. Climate, 23, 1793−1814, https://doi.org/10.1175/2009JCLI3163.1.
Seo, Y., S. Sugimoto, and K. Hanawa, 2014: Long-term variations of the Kuroshio Extension path in winter: Meridional movement and path state change. J. Climate, 27, 5929−5940, https://doi.org/10.1175/JCLI-D-13-00641.1.
Small, R. J., and Coauthors, 2008: Air–sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans, 45, 274−319, https://doi.org/10.1016/j.dynatmoce.2008.01.001.
Strong, C., G. Magnusdottir, and H. Stern, 2009: Observed feedback between winter sea ice and the North Atlantic Oscillation. J. Climate, 22, 6021−6032, https://doi.org/10.1175/2009JCLI3100.1.
Sugimoto, S., and K. Hanawa, 2011: Roles of SST anomalies on the wintertime turbulent heat fluxes in the Kuroshio– Oyashio confluence region: Influences of warm eddies detached from the Kuroshio Extension. J. Climate, 24, 6551−6561, https://doi.org/10.1175/2011JCLI4023.1.
Sugimoto, S., N. Kobayashi, and K. Hanawa, 2014: Quasi-decadal variation in intensity of the western part of the winter subarctic SST front in the western North Pacific: The influence of Kuroshio Extension path state. J. Phys. Oceanogr., 44, 2753−2762, https://doi.org/10.1175/JPO-D-13-0265.1.
Sun, X. G., L. F. Tao, and X.-Q. Yang, 2018: The influence of oceanic stochastic forcing on the atmospheric response to midlatitude North Pacific SST anomalies. Geophys. Res. Lett., 45, 9297−9304, https://doi.org/10.1029/2018GL078860.
Tanimoto, Y., H. Nakamura, T. Kagimoto, and S. Yamane, 2003: An active role of extratropical sea surface temperature anomalies in determining anomalous turbulent heat flux. J. Geophys. Res.: Oceans, 108, 3304, https://doi.org/10.1029/2002JC001750.
Tao, L. F., X. G. Sun, and X.-Q. Yang, 2019: The asymmetric atmospheric response to the midlatitude North Pacific SST anomalies. J. Geophys. Res.: Atmos., 124, 9222−9240, https://doi.org/10.1029/2019JD030500.
Tao, L. F., X.-Q. Yang, J. B. Fang, and X. G. Sun, 2020: PDO-related wintertime atmospheric anomalies over the midlatitude North Pacific: Local versus remote SST forcing. J. Climate, 33, 6989−7010, https://doi.org/10.1175/JCLI-D-19-0143.1.
Wang, F. Y., Z. Y. Liu, and M. Notaro, 2013: Extracting the dominant SST modes impacting North America's observed climate. J. Climate, 26, 5434−5452, https://doi.org/10.1175/JCLI-D-12-00583.1.
Wen, N., Z. Liu, and Q. Liu, 2010: Observed atmospheric responses to global SST variability modes: A unified assessment using GEFA. J. Climate,, 23, 1739−1759, https://doi.org/10.1175/2009JCLI3027.1.
Wen, N., Z. Y. Liu, and Y. H. Liu, 2015: Direct impact of El Niño on East Asian summer precipitation in the observation. Climate Dyn., 44, 2979−2987, https://doi.org/10.1007/s00382-015-2605-2.
Yao, Y., Z. Zhong, X.-Q. Yang, and X. G. Huang, 2020: Future changes in the impact of North Pacific midlatitude oceanic frontal intensity on the wintertime storm track in CMIP5 models. J. Meteor. Res., 34, 1199−1213, https://doi.org/10.1007/s13351-020-0057-z.
Yu, P. L., L. F. Zhang, Y. C. Zhang, and B. Deng, 2016: Interdecadal change of winter SST variability in the Kuroshio Extension region and its linkage with Aleutian atmospheric low pressure system. Acta Oceanologica Sinica, 35, 24−37, https://doi.org/10.1007/s13131-016-0859-0.
Yu, P. L., C. Zhang, L. F. Zhang, X. Chen, Q. J. Zhong, M. H. Yang, and X. Li, 2020: An index for depicting the long-term variability of mesoscale eddy activity over the Kuroshio Extension region. Atmosphere, 11, 792, https://doi.org/10.3390/atmos11080792.
Yuan, L., and Z. N. Xiao, 2017: The variability of the oceanic front in Kuroshio Extension and its relationship with the Pacific storm track in winter. Chinese Journal of Atmospheric Sciences, 41, 1141−1155. (in Chinese with English abstract)
Zhang, C., H. L. Liu, C. Y. Li, and P. F. Lin, 2019: Impacts of mesoscale sea surface temperature anomalies on the meridional shift of North Pacific storm track. International Journal of Climatology, 39, 5124−5139, https://doi.org/10.1002/joc.6130.
Zhang, C., H. L. Liu, J. B. Xie, P. F. Lin, C. Y. Li, Q. Yang, and J. Song, 2020a: North Pacific storm track response to the mesoscale SST in a global high-resolution atmospheric model. Climate Dyn., 55, 1597−1611, https://doi.org/10.1007/s00382-020-05343-x.
Zhang, R., J. B. Fang, and X.-Q. Yang, 2020b: What kinds of atmospheric anomalies drive wintertime North Pacific basin-scale subtropical oceanic front intensity variation? J. Climate, 33, 7011−7026, https://doi.org/10.1175/JCLI-D-19-0973.1.
Zhou, G. D., and X. H. Cheng, 2022: Impacts of oceanic fronts and eddies in the Kuroshio-Oyashio Extension region on the atmospheric general circulation and storm track. Adv. Atmos. Sci., 39, 22−54, https://doi.org/10.1007/s00376-021-0408-4.
Zhu, W. J., and Y. Li, 2010: Inter-decadal variation characteristics of winter North Pacific storm tracks and its possible influencing mechanism. Acta Meteorologica Sinica, 68, 477−486, https://doi.org/10.11676/qxxb2010.046. (in Chinese with English abstract