Bhat, G. S., and S. Kumar, 2015: Vertical structure of cumulonimbus towers and intense convective clouds over the South Asian region during the summer monsoon season. J. Geophys. Res. Atmos., 120, 1710−1722, https://doi.org/10.1002/2014JD022552.
Bookhagen, B., and D. W. Burbank, 2006: Topography, relief, and TRMM‐derived rainfall variations along the Himalaya. Geophys. Res. Lett., 33, L08405, https://doi.org/10.1029/2006GL026037.
Chang, Y., and X. L. Guo, 2016: Characteristics of convective cloud and precipitation during summer time at Naqu over Tibetan Plateau. Chin. Sci. Bull., 61, 1706−1720, https://doi.org/10.1360/N972015-01292. (in Chinese)
Chen, Q. L., G. L. Gao, Y. Li, H. K. Cai, X. Zhou, and Z. L. Wang, 2019: Main detrainment height of deep convection systems over the Tibetan Plateau and its southern slope. Adv. Atmos. Sci., 36, 1078−1088, https://doi.org/10.1007/s00376-019-9003-3.
Chen, Y. L., Y. F. Fu, T. Xian, and X. Pan, 2017: Characteristics of cloud cluster over the steep southern slopes of the Himalayas observed by CloudSat. International Journal of Climatology, 37, 4043−4052, https://doi.org/10.1002/joc.4992.
Chen, Y. L., A. Q. Zhang, Y. H. Zhang, C. G. Cui, R. Wan, B. Wang, and Y. F. Fu, 2020: A heavy precipitation event in the Yangtze River Basin led by an eastward moving Tibetan Plateau cloud system in the summer of 2016. J. Geophys. Res. Atmos., 125, e2020JD032429, https://doi.org/10.1029/2020JD032429.
Feng, J. M., L. P. Liu, Z. J. Wang, and R. Z. Chu, 2001: Comparison of cloud observed by ground based Doppler radar with TRMM PR in Qinghai-Xizang Plateau, China. Plateau Meteorology, 20, 345−353, https://doi.org/10.3321/j.issn:1000-0534.2001.04.001. (in Chinese with English abstract
Feng, L., and T. J. Zhou, 2012: Water vapor transport for summer precipitation over the Tibetan Plateau: Multidata set analysis. J. Geophys. Res. Atmos., 117, D20114, https://doi.org/10.1029/2011JD017012.
Fu, Y. F., and G. S. Liu, 2007: Possible misidentification of rain type by TRMM PR over Tibetan Plateau. J. Appl. Meteorol. Climatol., 46, 667−672, https://doi.org/10.1175/JAM2484.1.
Fu, Y. F., G. S. Liu, G. X. Wu, R. C. Yu, Y. P. Xu, Y. Wang, R. Li, and Q. Liu, 2006: Tower mast of precipitation over the central Tibetan Plateau summer. Geophys. Res. Lett., 33, L05802, https://doi.org/10.1029/2005GL024713.
Fu, Y. F., and Coauthors, 2018: Precipitation characteristics over the steep slope of the Himalayas in rainy season observed by TRMM PR and VIRS. Climate Dyn., 51, 1971−1989, https://doi.org/10.1007/s00382-017-3992-3.
Fu, Y. F., and Coauthors, 2020a: Fundamental characteristics of tropical rain cell structures as measured by TRMM PR. J. Meteor. Res., 34, 1129−22, https://doi.org/10.1007/s13351-020-0035-5.
Fu, Y. F., and Coauthors, 2020b: Land-surface processes and summer-cloud-precipitation characteristics in the Tibetan Plateau and their effects on downstream weather: A review and perspective. National Science Review, 7, 500−515, https://doi.org/10.1093/nsr/nwz226.
Hamada, A., Y. N. Takayabu, C. T. Liu, and E. J. Zipser, 2015: Weak linkage between the heaviest rainfall and tallest storms. Nature Communications, 6, 6213, https://doi.org/10.1038/ncomms7213.
Houze, R. A., B. F. Smull, and P. Dodge, 1990: Mesoscale organization of springtime rainstorms in Oklahoma. Mon. Wea. Rev., 118, 613−654, https://doi.org/10.1175/1520-0493(1990)118<0613:MOOSRI>2.0.CO;2.
Hu, L., D. F. Deng, S. T. Gao, and X. D. Xu, 2016: The seasonal variation of Tibetan Convective Systems: Satellite observation. J. Geophys. Res. Atmos., 121, 5512−5525, https://doi.org/10.1002/2015JD024390.
Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The tropical rainfall measuring mission (TRMM) sensor package. J. Atmos. Ocean. Technol., 15, 809−817, https://doi.org/10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.
LeMone, M. A., G. M. Barnes, and E. J. Zipser, 1984: Momentum flux by lines of cumulonimbus over the tropical oceans. J. Atmos. Sci., 41, 1914−1932, https://doi.org/10.1175/1520-0469(1984)041<1914:MFBLOC>2.0.CO;2.
Li, R., W. C. Shao, J. C. Guo, Y. F. Fu, Y. Wang, G. S. Liu, R. J. Zhou, and W. Z. Li, 2019: A simplified algorithm to estimate latent heating rate using vertical rainfall profiles over the Tibetan Plateau. J. Geophys. Res. Atmos., 124, 942−963, https://doi.org/10.1029/2018JD029297.
Lin, C. G., D. L. Chen, K. Yang, and T. H. Qu, 2018: Impact of model resolution on simulating the water vapor transport through the central Himalayas: Implication for models’ wet bias over the Tibetan Plateau. Climate Dyn., 51, 3195−3207, https://doi.org/10.1007/s00382-018-4074-x.
Liu, C. T., and E. Zipser, 2013: Regional variation of morphology of organized convection in the tropics and subtropics. J. Geophys. Res. Atmos., 118, 453−466, https://doi.org/10.1029/2012JD018409.
Liu, C. T., E. J. Zipser, D. J. Cecil, S. W. Nesbitt, and S. Sherwood, 2008: A cloud and precipitation feature database from nine years of TRMM observations. J. Appl. Meteorol. Climatol., 47, 2712−2728, https://doi.org/10.1175/2008JAMC1890.1.
Liu, L. P., J. F. Zheng, Z. Ruan, Z. H. Cui, Z. Q. Hu, S. H. Wu, G. Y. Dai, and Y. H. Wu, 2015: Comprehensive radar observations of clouds and precipitation over the Tibetan Plateau and preliminary analysis of cloud properties. J. Meteor. Res., 29, 546−561, https://doi.org/10.1007/s13351-015-4208-6.
Loehrer, S. M., and R. H. Johnson, 1995: Surface pressure and precipitation life cycle characteristics of PRE-STORM mesoscale convective systems. Mon. Wea. Rev., 123, 600−621, https://doi.org/10.1175/1520-0493(1995)123<0600:SPAPLC>2.0.CO;2.
Luo, Y. L., R. H. Zhang, W. M. Qian, Z. Z. Lou, and X. Hu, 2011: Intercomparison of deep convection over the Tibetan Plateau-Asian monsoon region and subtropical North America in boreal summer using CloudSat/CALIPSO data. J. Climate, 24, 2164−2177, https://doi.org/10.1175/2010JCLI4032.1.
McMurdie, L. A., A. K. Rowe, R. A. Houze Jr., S. R. Brodzik, J. P. Zagrodnik, and T. M. Schuldt, 2018: Terrain-enhanced precipitation processes above the melting layer: Results from OLYMPEX. J. Geophys. Res. Atmos., 123, 12 194−12 209, https://doi.org/10.1029/2018JD029161.
Nesbitt, S. W., R. Cifelli, and S. A. Rutledge, 2006: Storm morphology and rainfall characteristics of TRMM precipitation features. Mon. Wea. Rev., 134, 2702−2721, https://doi.org/10.1175/MWR3200.1.
Qie, X. S, X. K. Wu, T. Yuan, J. C. Bian, and D. R. Lu, 2014: Comprehensive pattern of deep convective systems over the Tibetan Plateau-South Asian monsoon region based on TRMM data. J. Climate, 27, 6612−6626, https://doi.org/10.1175/JCLI-D-14-00076.1.
Schumacher, C., and R. A. Houze, 2003: Stratiform rain in the tropics as seen by the TRMM precipitation radar. J. Climate, 16, 1739−1756, https://doi.org/10.1175/1520-0442(2003)016<1739:SRITTA>2.0.CO;2.
Su, Z., P. de Rosnay, J. Wen, L. Wang, and Y. Zeng, 2013: Evaluation of ECMWF's soil moisture analyses using observations on the Tibetan Plateau. J. Geophys. Res. Atmos., 118, 5304−5318, https://doi.org/10.1002/jgrd.50468.
Tao, S. Y., and Y. H. Ding, 1981: Observational evidence of the influence of the Qinghai-Xizang (Tibet) Plateau on the occurrence of heavy rain and severe convective storms in China. Bull. Amer. Meteor. Soc., 62, 23−30, https://doi.org/10.1175/1520-0477(1981)062<0023:OEOTIO>2.0.CO;2.
Wang, H., and X. L. Guo, 2019: Comparative analyses of vertical structure of deep convective clouds retrieved from satellites and ground-based radars at Naqu over the Tibetan Plateau. J. Meteor. Res., 33, 446−462, https://doi.org/10.1007/s13351-019-8612-1.
Wang, Y., and Coauthors, 2017: Evaluation of precipitable water vapor from four satellite products and four reanalysis datasets against GPS measurements on the southern Tibetan Plateau. J. Climate, 30, 5699−5713, https://doi.org/10.1175/JCLI-D-16-0630.1.
Wang, Y., and Coauthors, 2020: Synergy of orographic drag parameterization and high resolution greatly reduces biases of WRF-simulated precipitation in central Himalaya. Climate. Dyn., 54, 1729−1740, https://doi.org/10.1007/s00382-019-05080-w.
Wu, G. X., and Coauthors, 2007: The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate. Journal of Hydrometeorology, 8, 770−789, https://doi.org/10.1175/JHM609.1.
Wu, G. X., Y. M. Liu, B. He, Q. Bao, A. M. Duan, and F. F. Jin, 2012: Thermal controls on the Asian summer monsoon. Sci. Rep., 2, 404, https://doi.org/10.1038/srep00404.
Wu, G. X., and Coauthors, 2015: Tibetan plateau climate dynamics: Recent research progress and outlook. National Science Review, 2, 100−116, https://doi.org/10.1093/nsr/nwu045.
Xu, W. X., 2013: Precipitation and convective characteristics of summer deep convection over East Asia observed by TRMM. Mon. Wea. Rev., 141, 1577−1592, https://doi.org/10.1175/MWR-D-12-00177.1.
Xu, W. X., and E. J. Zipser, 2011: Diurnal variations of precipitation, deep convection, and lightning over and east of the eastern Tibetan Plateau. J. Climate, 24, 448−465, https://doi.org/10.1175/2010JCLI3719.1.
Xu, X. D., C. G. Lu, X. H. Shi, and S. T. Gao, 2008: World water tower: An atmospheric perspective. Geophys. Res. Lett., 35, L20815, https://doi.org/10.1029/2008GL035867.
Yan, Y. F., and Y. M. Liu, 2019: Vertical structures of convective and stratiform clouds in boreal summer over the Tibetan Plateau and its neighboring regions. Adv. Atmos. Sci., 36, 1089−1102, https://doi.org/10.1007/s00376-019-8229-4.
Yan, Y. F., Y. M. Liu, and J. H. Lu, 2016: Cloud vertical structure, precipitation, and cloud radiative effects over Tibetan Plateau and its neighboring regions. J. Geophys. Res. Atmos., 121, 5864−5877, https://doi.org/10.1002/2015JD024591.
Yang, K., X. F. Guo, and B. Y. Wu, 2011: Recent trends in surface sensible heat flux on the Tibetan Plateau. Science China Earth Sciences, 54, 19−28, https://doi.org/10.1007/s11430-010-4036-6.
Yatagai, A., and H. Kawamoto, 2008: Quantitative estimation of orographic precipitation over the Himalayas by using TRMM/PR and a dense network of rain gauges. Proc. Volume 7148, Remote Sensing and Modeling of the Atmosphere, Oceans, and Interactions II, Noumea, New Caledonia, SPIE, 71480C, https://doi.org/10.1117/12.811943.
Yue, Z. G., X. Yu, G. H. Liu, J. Dai, Y. N. Zhu, X. H. Xu, Y. Hui, and C. Chen, 2019: Microphysical properties of convective clouds in summer over the Tibetan Plateau from SNPP/VIIRS satellite data. J. Meteor. Res., 33, 433−445, https://doi.org/10.1007/s13351-019-8608-x.
Yuter, S. E., and R. A. Houze, 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 1941−1963, https://doi.org/10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2.
Zagrodnik, J. P., L. A. McMurdie, R. A. Houze Jr., and S. Tanelli, 2019: Vertical structure and microphysical characteristics of frontal systems passing over a three-dimensional coastal mountain range. J. Atmos. Sci., 76, 1521−1546, https://doi.org/10.1175/JAS-D-18-0279.1.
Zhang, A. Q., Y. F. Fu, Y. L. Chen, G. S. Liu, and X. D. Zhang, 2018: Impact of the surface wind flow on precipitation characteristics over the southern Himalayas: GPM observations. Atmos. Res., 202, 10−22, https://doi.org/10.1016/j.atmosres.2017.11.001.
Zhao, P., and Coauthors, 2018: The third atmospheric scientific experiment for understanding the earth-atmosphere coupled system over the Tibetan Plateau and its effects. Bull. Amer. Meteor. Soc., 99, 757−776, https://doi.org/10.1175/BAMS-D-16-0050.1.
Zhao, P., and Coauthors, 2019a: The Tibetan Plateau surface-atmosphere coupling system and its weather and climate effects: The third Tibetan Plateau atmospheric science experiment. J. Meteor. Res., 33, 375−399, https://doi.org/10.1007/s13351-019-8602-3.
Zhao, Y., X. D. Xu, Z. Ruan, B. Chen, and F. Wang, 2019b: Precursory strong-signal characteristics of the convective clouds of the Central Tibetan Plateau detected by radar echoes with respect to the evolutionary processes of an eastward-moving heavy rainstorm belt in the Yangtze River Basin. Meteorol. Atmos. Phys., 131, 697−712, https://doi.org/10.1007/s00703-018-0597-2.
Zhou, X. J., P. Zhao, J. M. Chen, L. X. Chen, and W. L. Li, 2009: Impacts of thermodynamic processes over the Tibetan Plateau on the Northern Hemispheric climate. Science in China Series D: Earth Sciences, 52, 1679−1693, https://doi.org/10.1007/s11430-009-0194-9.
Zhu, X. Y., Y. M. Liu, and G. X. Wu, 2012: An assessment of summer sensible heat flux on the Tibetan Plateau from eight data sets. Science China Earth Sciences, 55, 779−786, https://doi.org/10.1007/s11430-012-4379-2.
Zhuo, H., Y. Liu, and J. Jin, 2016: Improvement of land surface temperature simulation over the Tibetan plateau and the associated impact on circulation in East Asia. Atmos. Sci. Lett., 17, 162−168, https://doi.org/10.1002/asl.638.