Arzel, O., T. Fichefet, and H. Goosse, 2006: Sea ice evolution over the 20th and 21st centuries as simulated by current AOGCMs. Ocean Modelling, 12(3-4), 401−415, https://doi.org/10.1016/j.ocemod.2005.08.002.
Bitz, C. M., and G. H. Roe, 2004: A mechanism for the high rate of sea ice thinning in the Arctic Ocean. J. Climate, 17(18), 3623−3632, https://doi.org/10.1175/1520-0442(2004)017<3623:AMFTHR>2.0.CO;2.
Bracegirdle, T. J., 2022: Early-to-late winter 20th century North Atlantic multidecadal atmospheric variability in observations, CMIP5 and CMIP6. Geophys. Res. Lett., 49(11), e2022GL098212, https://doi.org/10.1029/2022GL098212.
Bryan, K., 1969: A numerical method for the study of the circulation of the world ocean. J. Comput. Phys., 4(3), 347−376, https://doi.org/10.1016/0021-9991(69)90004-7.
Day, J. J., J. C. Hargreaves, J. D. Annan, and A. Abe-Ouchi, 2012: Sources of multi-decadal variability in Arctic sea ice extent. Environmental Research Letters, 7(3), 034011, https://doi.org/10.1088/1748-9326/7/3/034011.
Divoky, G. J., P. M. Lukacs, and M. L. Druckenmiller, 2015: Effects of recent decreases in arctic sea ice on an ice-associated marine bird. Progress in Oceanography, 136, 151−161, https://doi.org/10.1016/j.pocean.2015.05.010.
Dörr, J., M. Årthun, T. Eldevik, and E. Madonna, 2021: Mechanisms of regional winter sea-ice variability in a warming Arctic. J. Climate, 34(21), 8635−8653, https://doi.org/10.1175/JCLI-D-21-0149.1.
Goosse, H., and V. Zunz, 2014: Decadal trends in the Antarctic sea ice extent ultimately controlled by ice-ocean feedback. The Cryosphere, 8(2), 453−470, https://doi.org/10.5194/tc-8-453-2014.
Hezel, P. J., X. Zhang, C. M. Bitz, B. P. Kelly, and F. Massonnet, 2012: Projected decline in spring snow depth on Arctic sea ice caused by progressively later autumn open ocean freeze-up this century. Geophys. Res. Lett., 39(17), L17505, https://doi.org/10.1029/2012GL052794.
Holland, M. M., C. M. Bitz, and B. Tremblay, 2006: Future abrupt reductions in the summer Arctic sea ice. Geophys. Res. Lett., 33(23), L23503, https://doi.org/10.1029/2006GL028024.
IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press.
Kashiwase, H., K. I. Ohshima, S. Nihashi, and H. Eicken, 2017: Evidence for ice-ocean albedo feedback in the Arctic Ocean shifting to a seasonal ice zone. Scientific Reports, 7(1), 8170, https://doi.org/10.1038/s41598-017-08467-z.
Kraus, E. B., and J. S. Turner, 1967: A one-dimensional model of the seasonal thermocline II. The general theory and its consequences. Tellus, 19, 98−106.
Kumar, A., J. Yadav, and R. Mohan, 2021: Spatio-temporal change and variability of Barents-Kara sea ice, in the Arctic: Ocean and atmospheric implications. Science of the Total Environment, 753, 142046, https://doi.org/10.1016/j.scitotenv.2020.142046.
Kwok, R., 2011: Observational assessment of Arctic Ocean sea ice motion, export, and thickness in CMIP3 climate simulations. J. Geophys. Res.: Oceans, 116, C00D05, https://doi.org/10.1029/2011JC007004.
Kwok, R., and G. F. Cunningham, 2015: Variability of Arctic sea ice thickness and volume from CryoSat-2. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2045), 20140157, https://doi.org/10.1098/rsta.2014.0157.
Kwok, R., G. F. Cunningham, M. Wensnahan, I. Rigor, H. J. Zwally, and D. Yi, 2009: Thinning and volume loss of the Arctic Ocean sea ice cover: 2003−2008. J. Geophys. Res.: Oceans, 114(C7), C07005, https://doi.org/10.1029/2009JC005312.
Laxon, S. W., and Coauthors, 2013: CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophys. Res. Lett., 40(4), 732−737, https://doi.org/10.1002/grl.50193.
Lindsay, R. W., and J. Zhang, 2006: Assimilation of ice concentration in an ice–ocean model. J. Atmos. Oceanic Technol., 23(5), 742−749, https://doi.org/10.1175/JTECH1871.1.
Long, M. Y., L. J. Zhang, S. Y. Hu, and S. M. Qian, 2021: Multi-aspect assessment of CMIP6 models for Arctic sea ice simulation. J. Climate, 34(4), 1515−1529, https://doi.org/10.1175/JCLI-D-20-0522.1.
Mallett, R. D. C., J. C. Stroeve, M. Tsamados, J. C. Landy, R. Willatt, V. Nandan, and G. E. Liston, 2021: Faster decline and higher variability in the sea ice thickness of the marginal Arctic seas when accounting for dynamic snow cover. The Cryosphere, 15(5), 2429−2450, https://doi.org/10.5194/tc-15-2429-2021.
Massonnet, F., M. Vancoppenolle, H. Goosse, D. Docquier, T. Fichefet, and E. Blanchard-Wrigglesworth, 2018: Arctic sea-ice change tied to its mean state through thermodynamic processes. Nature Climate Change, 8(7), 599−603, https://doi.org/10.1038/s41558-018-0204-z.
Meier, W. N., and Coauthors, 2014: Arctic sea ice in transformation: A review of recent observed changes and impacts on biology and human activity. Rev. Geophys., 52(3), 185−217, https://doi.org/10.1002/2013RG000431.
Melia, N., K. Haines, and E. Hawkins, 2016: Sea ice decline and 21st century trans-Arctic shipping routes. Geophys. Res. Lett., 43(18), 9720−9728, https://doi.org/10.1002/2016GL069315.
Min, C., Q. H. Yang, D. K. Chen, Y. J. Yang, X. Y. Zhou, Q. Shu, and J. P. Liu, 2022a: The emerging Arctic shipping corridors. Geophys. Res. Lett., 49, e2022GL099157, https://doi.org/10.1029/2022GL099157.
Min, C., X. Y. Zhou, H. Luo, Y. J. Yang, Y. G. Wang, J. L. Zhang, and Q. H. Yang., 2022b: Toward quantifying the increasing accessibility of the Arctic Northeast Passage in the past four decades. Adv. Atmos. Sci.,
Min, C., L. J. Mu, Q. H. Yang, R. Ricker, Q. Shi, B. Han, R. H. Wu, and J. P. Liu, 2019: Sea ice export through the Fram Strait derived from a combined model and satellite data set. The Cryosphere, 13(12), 3209−3224, https://doi.org/10.5194/tc-13-3209-2019.
Notz, D., and SIMIP Community, 2020: Arctic sea ice in CMIP6. Geophys. Res. Lett., 47(10), e2019GL086749, https://doi.org/10.1029/2019GL086749.
Notz, D., A. Jahn, M. Holland, E. Hunke, F. Massonnet, J. Stroeve, B. Tremblay, and M. Vancoppenolle, 2016: The CMIP6 Sea-Ice Model Intercomparison Project (SIMIP): Understanding sea ice through climate-model simulations. Geoscientific Model Development, 9(9), 3427−3446, https://doi.org/10.5194/gmd-9-3427-2016.
Park, H., E. Watanabe, Y. Kim, I. Polyakov, K. Oshima, X. D. Zhang, J. S. Kimball, and D. Q. Yang, 2020: Increasing riverine heat influx triggers Arctic sea ice decline and oceanic and atmospheric warming. Science Advances, 6(45), eabc4699, https://doi.org/10.1126/sciadv.abc4699.
Parkinson, C. L., and D. J. Cavalieri, 2008: Arctic sea ice variability and trends, 1979−2006. J. Geophys. Res.: Oceans, 113(C7), C07003, https://doi.org/10.1029/2007JC004564.
Petrick, S., K. Riemann-Campe, S. Hoog, C. Growitsch, H. Schwind, R. Gerdes, and K. Rehdanz, 2017: Climate change, future Arctic Sea ice, and the competitiveness of European Arctic offshore oil and gas production on world markets. Ambio, 46(S3), 410−422, https://doi.org/10.1007/s13280-017-0957-z.
Post, E., and Coauthors, 2013: Ecological consequences of sea-ice decline. Science, 341(6145), 519−524, https://doi.org/10.1126/science.1235225.
Ricker, R., F. Girard-Ardhuin, T. Krumpen, and C. Lique, 2018: Satellite-derived sea ice export and its impact on Arctic ice mass balance. The Cryosphere, 12(9), 3017−3032, https://doi.org/10.5194/tc-12-3017-2018.
Ricker, R., S. Hendricks, D. K. Perovich, V. Helm, and R. Gerdes, 2015: Impact of snow accumulation on CryoSat-2 range retrievals over Arctic sea ice: An observational approach with buoy data. Geophys. Res. Lett., 42(11), 4447−4455, https://doi.org/10.1002/2015GL064081.
Roach, L. A., and Coauthors, 2020: Antarctic sea ice area in CMIP6. Geophys. Res. Lett., 47(9), e2019GL086729, https://doi.org/10.1029/2019GL086729.
Schweiger, A., R. Lindsay, J. L. Zhang, M. Steele, H. Stern, and R. Kwok, 2011: Uncertainty in modeled Arctic sea ice volume. J. Geophys. Res.: Oceans, 116, C00D06, https://doi.org/10.1029/2011JC007084.
Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464(7293), 1334−1337, https://doi.org/10.1038/nature09051.
Semenov, V. A., T. Martin, L. K. Behrens, and M. Latif, 2015: Arctic sea ice area in CMIP3 and CMIP5 climate model ensembles–variability and change. The Cryosphere Discussions, 9(1), 1077−1131, https://doi.org/10.5194/tcd-9-1077-2015.
Serreze, M. C., and W. N. Meier, 2019: The Arctic’s sea ice cover: Trends, variability, predictability, and comparisons to the Antarctic. Annals of the New York Academy of Sciences, 1436(1), 36−53, https://doi.org/10.1111/nyas.13856.
Sévellec, F., A. V. Fedorov, and W. Liu, 2017: Arctic sea-ice decline weakens the Atlantic Meridional Overturning Circulation. Nature Climate Change, 7(8), 604−610, https://doi.org/10.1038/nclimate3353.
Shen, Z. L., A. M. Duan, D. L. Li, and J. X. Li, 2021: Assessment and ranking of climate models in Arctic sea ice cover simulation: From CMIP5 to CMIP6. J. Climate, 34(9), 3609−3627, https://doi.org/10.1175/JCLI-D-20-0294.1.
Shu, Q., Q. Wang, J. Su, X. Li, and F. L. Qiao, 2019: Assessment of the Atlantic water layer in the Arctic Ocean in CMIP5 climate models. Climate Dyn., 53(9−10), 5279−5291, https://doi.org/10.1007/s00382-019-04870-6.
Shu, Q., Q. Wang, Z. Y. Song, F. L. Qiao, J. C. Zhao, M. Chu, and X. F. Li, 2020: Assessment of sea ice extent in CMIP6 with comparison to observations and CMIP5. Geophys. Res. Lett., 47(9), e2020GL087965, https://doi.org/10.1029/2020GL087965.
Smith, L. C., and S. R. Stephenson, 2013: New Trans-Arctic shipping routes navigable by midcentury. Proceedings of the National Academy of Sciences of the United States of America, 110(13), E1191−E1195, https://doi.org/10.1073/pnas.1214212110.
Spall, M. A., 2019: Dynamics and thermodynamics of the mean transpolar drift and ice thickness in the Arctic Ocean. J. Climate, 32(24), 8449−8463, https://doi.org/10.1175/JCLI-D-19-0252.1.
Stroeve, J., A. Barrett, M. Serreze, and A. Schweiger, 2014: Using records from submarine, aircraft and satellites to evaluate climate model simulations of Arctic sea ice thickness. The Cryosphere, 8(5), 1839−1854, https://doi.org/10.5194/tc-8-1839-2014.
Stroeve, J. C., M. C. Serreze, M. M. Holland, J. E. Kay, J. Malanik, and A. P. Barrett, 2012a: The Arctic’s rapidly shrinking sea ice cover: A research synthesis. Climatic Change, 110(3−4), 1005−1027, https://doi.org/10.1007/s10584-011-0101-1.
Stroeve, J. C., V. Kattsov, A. Barrett, M. Serreze, T. Pavlova, M. Holland, and W. N. Meier, 2012b: Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys. Res. Lett., 39(16), L16502, https://doi.org/10.1029/2012GL052676.
Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res.: Atmos., 106(D7), 7183−7192, https://doi.org/10.1029/2000JD900719.
Thackeray, C. W., and A. Hall, 2019: An emergent constraint on future Arctic sea-ice albedo feedback. Nature Climate Change, 9(12), 972−978, https://doi.org/10.1038/s41558-019-0619-1.
Tian-Kunze, X., L. Kaleschke, N. Maaß, M. Mäkynen, N. Serra, M. Drusch, and T. Krumpen, 2014: SMOS-derived thin sea ice thickness: Algorithm baseline, product specifications and initial verification. The Cryosphere, 8(3), 997−1018, https://doi.org/10.5194/tc-8-997-2014.
Turner, J., T. J. Bracegirdle, T. Phillips, G. J. Marshall, and J. S. Hosking, 2013: An initial assessment of Antarctic sea ice extent in the CMIP5 models. J. Climate, 26(5), 1473−1484, https://doi.org/10.1175/JCLI-D-12-00068.1.
Watts, M., W. Maslowski, Y. J. Lee, J. C. Kinney, and R. Osinski, 2021: A spatial evaluation of Arctic sea ice and regional limitations in CMIP6 historical simulations. J. Climate, 34, 6399−6420, https://doi.org/10.1175/JCLI-D-20-0491.1.
Yu, L. J., S. Y. Zhong, T. Vihma, and B. Sun, 2021: Attribution of late summer early autumn Arctic sea ice decline in recent decades. NPJ Climate and Atmospheric Science, 4(1), 3, https://doi.org/10.1038/S41612-020-00157-4.
Zhang, J., S. T. Stegall, and X. D. Zhang, 2018: Wind-sea surface temperature-sea ice relationship in the Chukchi-Beaufort Seas during autumn. Environmental Research Letters, 13(3), 034008, https://doi.org/10.1088/1748-9326/aa9adb.
Zhang, J., W. D. Hibler, M. Steele, and D. A. Rothrock, 1998: Arctic ice-ocean modeling with and without climate restoring. J. Phys. Oceanogr., 28(2), 191−217, https://doi.org/10.1175/1520-0485(1998)028<0191:AIOMWA>2.0.CO;2.
Zhang, J. L., and D. A. Rothrock, 2003: Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates. Mon. Wea. Rev., 131(5), 845−861, https://doi.org/10.1175/1520-0493(2003)131<0845:MGSIWA>2.0.CO;2.
Zhang, R., 2015: Mechanisms for low-frequency variability of summer Arctic sea ice extent. Proceedings of the National Academy of Sciences of the United States of America, 112(15), 4570−4575, https://doi.org/10.1073/pnas.1422296112.
Zhou, T. J., L. W. Zou, and X. L. Chen, 2019: Commentary on the Coupled Model Intercomparison Project Phase 6 (CMIP6). Climate Change Research, 15(5), 445−456, https://doi.org/10.12006/j.issn.1673-1719.2019.193. (in Chinese with English abstract
Zhu, H. H., Z. H. Jiang, J. Li, W. Li, C. X. Sun, and L. Li, 2020: Does CMIP6 inspire more confidence in simulating climate extremes over China? Adv. Atmos. Sci., 37(10), 1119−1132, https://doi.org/10.1007/s00376-020-9289-1.