Atkinson, N., Q. F. Lu, B. Bell, F. Carminati, K. Lean, N. Bormann, and H. Lawrence, 2015: The FY-3C Evaluation Project: Microwave Sounder Calibration and Direct Broadcast Experiences. [Available from https://cimss.ssec.wisc.edu/itwg/itsc/itsc20/papers/1_02_atkinson_paper.pdf.]
Bauer, P., A. Thorpe, and G. Brunet, 2015: The quiet revolution of numerical weather prediction. Nature, 525, 47−55, https://doi.org/10.1038/nature14956.
Bell, W., and Coauthors, 2008: The assimilation of SSMIS radiances in numerical weather prediction models. IEEE Trans. Geosci. Remote Sens., 46, 884−900, https://doi.org/10.1109/TGRS.2008.917335.
Bennartz, R., A. Thoss, A. Dybbroe, and D. B. Michelson, 2002: Precipitation analysis using the advanced microwave sounding unit in support of nowcasting applications. Meteorological Applications, 9(2), 177−189, https://doi.org/10.1017/S1350482702002037.
Berg, W., and Coauthors, 2016: Intercalibration of the GPM microwave radiometer constellation. J. Atmos. Oceanic Technol., 33(12), 2639−2654, https://doi.org/10.1175/JTECH-D-16-0100.1.
Bobak, J. P., D. J. Dowgiallo, T. E. vonRentzell, and N. R. McGlothlin, 2005: Satellite calibration and validation utilizing the Airborne Polarimetric Microwave Imaging Radiometer (APMIR). Proc. OCEANS 2005 MTS/IEEE, Washington, DC, IEEE, 352−354, doi: 10.1109/OCEANS.2005.1639787.
Booton, A., W. Bell, and N. Atkinson, 2014: An improved bias correction for SSMIS. [Available from https://cimss.ssec.wisc.edu/itwg/itsc/itsc19/program/papers/10_03_booton.pdf]
Bormann, N., A. Fouilloux, and W. Bell, 2013: Evaluation and assimilation of ATMS data in the ECMWF system. J. Geophys. Res., 118(23), 12 970−12 980, https://doi.org/10.1002/2013JD020325.
Brogniez, H., and Coauthors, 2016: A review of sources of systematic errors and uncertainties in observations and simulations at 183 GHz. Atmospheric Measurement Techniques, 9(5), 2207−2221, https://doi.org/10.5194/amt-9-2207-2016.
Burgdorf, M., S. A. Buehler, T. Lang, S. Michel, and I. Hans, 2016: The moon as a photometric calibration standard for microwave sensors. Atmospheric Measurement Techniques, 9, 3467−3475, https://doi.org/10.5194/amt-9-3467-2016.
Calbet, X., and Coauthors, 2018: Can turbulence within the field of view cause significant biases in radiative transfer modelling at the 183 GHz band? Atmospheric Measurement Techniques Discussions, doi: 10.5194/amt-2018-181.
Cao, C. Y., M. Weinreb, and H. Xu, 2004: Predicting simultaneous nadir overpasses among polar-orbiting meteorological satellites for the intersatellite calibration of radiometers. J. Atmos. Oceanic Technol, 21, 537−542, https://doi.org/10.1175/1520-0426(2004)021<0537:PSNOAP>2.0.CO;2.
Carminati, F., J. Goddard, H. Lawrence, and S. Newman, 2017: Calibration/Validation Study of GPM GMI. Available from http://www.gaia-clim.eu/system/files/document/d4.6.pdf.
Carminati, F., B. Candy, W. Bell, and N. Atkinson, 2018: Assessment and assimilation of FY-3 humidity sounders and imager in the UK Met Office global model. Adv. Atmos. Sci., 35(8), 942−954, https://doi.org/10.1007/s00376-018-7266-8.
Chen, K. Y., S. English, N. Bormann, and J. Zhu, 2015: Assessment of FY-3A and FY-3B MWHS observations. Wea. Forecasting, 30, 1280−1290, https://doi.org/10.1175/WAF-D-15-0025.1.
Chen, K. Y., N. Bormann, S. English, and J. Zhu, 2018: Assimilation of Fengyun-3B satellite microwave humidity sounder data over land. Adv. Atmos. Sci., 35(3), 268−275, https://doi.org/10.1007/s00376-017-7088-0.
English, S. J., J. R. Eyre, and J. A. Smith, 1999: A cloud-detection scheme for use with satellite sounding radiances in the context of data assimilation for numerical weather prediction. Quart. J. Roy. Meteorol. Soc., 125(559), 2359−2378, https://doi.org/10.1002/qj.49712555902.
English, S. J., R. J. Renshaw, P. C. Dibben, A. J. Smith, P. J. Rayer, C. Poulsen, F. W. Saunders, and J. R. Eyre, 2000: A comparison of the impact of TOVS arid ATOVS satellite sounding data on the accuracy of numerical weather forecasts. Quart. J. Roy. Meteorol. Soc., 126, 2911−2931, https://doi.org/10.1002/qj.49712656915.
Geer, A. J., P. Bauer, and N. Bormann, 2010: Solar biases in microwave imager observations assimilated at ECMWF. IEEE Trans. Geosci. Remote Sens., 48, 2660−2669, https://doi.org/10.1109/TGRS.2010.2040186.
Gu, X. F., and X. D. Tong, 2015: Overview of China earth observation satellite programs [Space Agencies]. IEEE Geoscience and Remote Sensing Magazine, 3(3), 113−129, doi: 10.1109/MGRS.2015.2467172.
Guo, Y., J. Y. He, S. Y. Gu, and N. M. Lu, 2019: Calibration and validation of Feng Yun-3-D microwave humidity sounder Ⅱ. IEEE Geoscience and Remote Sensing Letters, doi: 10.1109/LGRS.2019.2957403.
He, J. Y., S. W. Zhang, and Z. Z. Wang, 2015: Advanced microwave atmospheric sounder (AMAS) channel specifications and T/V calibration results on FY-3C satellite. IEEE Trans. Geosci. Remote Sens., 53(1), 481−493, https://doi.org/10.1109/TGRS.2014.2324173.
Joo, S., J. Eyre, and R. Marriott, 2013: The impact of MetOp and other satellite data within the met office global NWP system using an adjoint-based sensitivity method. Mon. Wea. Rev., 141, 3331−3342, https://doi.org/10.1175/MWR-D-12-00232.1.
Kazumori, M., and S. J. English, 2015: Use of the ocean surface wind direction signal in microwave radiance assimilation. Quart. J. Roy. Meteorol. Soc., 141, 1354−1375, https://doi.org/10.1002/qj.2445.
Kazumori, M., A. J. Geer, and S. J. English, 2016: Effects of all-sky assimilation of GCOM-W/AMSR2 radiances in the ECMWF numerical weather prediction system. Quart. J. Roy. Meteorol. Soc., 142, 721−737, https://doi.org/10.1002/qj.2669.
Lawrence, H., and Coauthors, 2017: An Evaluation of FY-3C MWRI and Assessment of the Long-Term Quality of FY-3C MWHS-2 at ECMWF and the Met Office. European Centre for Medium-Range Weather Forecasts. [Available from https://www.ecmwf.int/sites/default/files/elibrary/2017/17206-evaluation-fy-3c-mwri-and-assessment-long-term-quality-fy-3c-mwhs-2-ecmwf-and-met-office.pdf]
Lawrence, H., N. Bormann, A. J. Geer, Q. F. Lu, and S. J. English, 2018: Evaluation and assimilation of the microwave sounder MWHS-2 onboard FY-3C in the ECMWF numerical weather prediction system. IEEE Trans. Geosci. Remote Sens., 56(6), 3333−3349, https://doi.org/10.1109/TGRS.2018.2798292.
Li, J., and G. Q. Liu, 2016: Direct assimilation of Chinese FY-3C microwave temperature sounder-2 radiances in the global GRAPES system. Atmospheric Measurement Techniques, 9, 3095−3113, https://doi.org/10.5194/amt-9-3095-2016.
Li, J., Z. K. Qin, and G. Q. Liu, 2016: A new generation of Chinese FY-3C microwave sounding measurements and the initial assessments of its observations. Int. J. Remote Sens., 37, 4035−4058, https://doi.org/10.1080/01431161.2016.1207260.
Lorenc, A. C., and Coauthors, 2000: The Met. office global three-dimensional variational data assimilation scheme. Quart. J. Roy. Meteorol. Soc., 126, 2991−3012, https://doi.org/10.1002/qj.49712657002.
Lu, Q. F., H. Lawrence, N. Bormann, S. English, K. Lean, N. Atkinson, W. Bell, and F. Carminati, 2015: An Evaluation of FY-3C Satellite Data Quality at ECMWF and the Met Office, European Centre for Medium-Range Weather Forecasts. Available from https://www.ecmwf.int/sites/default/files/elibrary/2015/14692-evaluation-fy-3c-satellite-data-quality-ecmwf-and-met-office.pdf.
Macelloni, G., M. Brogioni, P. Pampaloni, A. Cagnati, and M. R. Drinkwater, 2006: DOMEX 2004: An experimental campaign at Dome-C Antarctica for the calibration of spaceborne low-frequency microwave radiometers. IEEE Trans. Geosci. Remote Sens., 44(10), 2642−2653, https://doi.org/10.1109/TGRS.2006.882801.
Moradi, I., R. R. Ferraro, P. Eriksson, and F. Z. Weng, 2015: Intercalibration and validation of observations from ATMS and SAPHIR microwave sounders. IEEE Trans. Geosci. Remote Sens., 53, 5915−5925, https://doi.org/10.1109/TGRS.2015.2427165.
Newell, D., and Coauthors, 2014: GPM microwave imager key performance and calibration results. Proc. 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, IEEE, 3754−3757, doi: 10.1109/IGARSS.2014.6947300.
Newman, S., F. Carminati, H. Lawrence, N. Bormann, K. Salonen, and W. Bell, 2020: Assessment of new satellite missions within the framework of numerical weather prediction. Remote Sensing, 12, 1580, https://doi.org/10.3390/rs12101580.
Pielke, R., Jr., and R. E. Carbone, 2002: Weather impacts, forecasts, and policy: An integrated perspective. Bull. Amer. Meteorol. Soc., 83, 393−406, https://doi.org/10.1175/1520-0477(2002)083<0393:WIFAP>2.3.CO;2.
Rawlins, F., S. P. Ballard, K. J. Bovis, A. M. Clayton, D. Li, G. W. Inverarity, A. C. Lorenc, and T. J. Payne, 2007: The Met Office global four-dimensional variational data assimilation scheme. Quart. J. Roy. Meteorol. Soc., 133, 347−362, https://doi.org/10.1002/qj.32.
Rodgers, C. D., 2000: Inverse Methods for Atmospheric Sounding: Theory and Practice. World Scientific Publishing Singapore.
Saunders, R., and Coauthors, 2018: An update on the RTTOV fast radiative transfer model (currently at version 12). Geosci. Model Dev. Discuss., doi: 10.5194/gmd-2018-64.
Saunders, R. W., T. A. Blackmore, B. Candy, P. N. Francis, and T. J. Hewison, 2013: Monitoring satellite radiance biases using NWP models. IEEE Trans. Geosci. Remote Sens., 51(3), 1124−1138, https://doi.org/10.1109/TGRS.2012.2229283.
Tian, X. X., X. L. Zou, and S. P. Yang, 2018: A limb correction method for the microwave temperature sounder 2 and its applications. Adv. Atmos. Sci., 35(12), 1547−1552, https://doi.org/10.1007/s00376-018-8092-8.
Uppala, S. M., and Coauthors, 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteorol. Soc., 131, 2961−3012, https://doi.org/10.1256/qj.04.176.
Wang, X., and X. Li, 2014: Preliminary investigation of Fengyun-3C Microwave Temperature Sounder (MWTS) measurements. Remote Sensing Letters, 5(12), 1002−1011, https://doi.org/10.1080/2150704X.2014.988305.
Wang, Z. Z., J. Y. Li, J. Y. He, S. W. Zhang, S. Y. Gu, Y. Li, Y. Guo, and B. Y. He, 2019: Performance analysis of microwave humidity and temperature sounder onboard the FY-3D satellite from prelaunch multiangle calibration data in thermal/vacuum test. IEEE Trans. Geosci. Remote Sens., 57, 1664−1683, https://doi.org/10.1109/TGRS.2018.2868324.
Xie, X. X., S. L. Wu, H. X. Xu, W. M. Yu, J. K. He, and S. Y. Gu, 2018: Ascending—descending bias correction of microwave radiation imager on board Fengyun-3C. IEEE Trans. Geosci. Remote Sens., 57(6), 3126−3134, https://doi.org/10.1109/TGRS.2018.2881094.
Yang, H., and Coauthors, 2011: The Fengyun-3 microwave radiation imager on-orbit verification. IEEE Trans. Geosci. Remote Sens., 49(11), 4552−4560, https://doi.org/10.1109/TGRS.2011.2148200.
Yang, H., J. Zhou, F. Z. Weng, N. H. Sun, K. Anderson, Q. H. Liu, and E. J. Kim, 2018: Developing vicarious calibration for microwave sounding instruments using lunar radiation. IEEE Trans. Geosci. Remote Sens., 56(11), 6723−6733, https://doi.org/10.1109/TGRS.2018.2841997.
Yang, J. X., D. S. McKague, and C. S. Ruf, 2016b: Boreal, temperate, and tropical forests as vicarious calibration sites for spaceborne microwave radiometry. IEEE Trans. Geosci. Remote Sens., 54(2), 1035−1051, https://doi.org/10.1109/TGRS.2015.2472532.
Yang, W. Z., V. O. John, X. P. Zhao, H. Lu, and K. R. Knapp, 2016a: Satellite climate data records: Development, applications, and societal benefits. Remote Sensing, 8, 331, https://doi.org/10.3390/rs8040331.
Zou, C. Z., and W. H. Wang, 2011: Intersatellite calibration of AMSU-A observations for weather and climate applications. J. Geophys. Res., 116, D23113, https://doi.org/10.1029/2011JD016205.
Zou, X. L., J. Zhao, F. Z. Weng, and Z. K. Qin, 2012: Detection of radio-frequency interference signal over land from FY-3B Microwave Radiation Imager (MWRI). IEEE Trans. Geosci. Remote Sens., 50(12), 4994−5003, https://doi.org/10.1109/TGRS.2012.2191792.