Bintanja, R., 2000: Snowdrift suspension and atmospheric turbulence. Part I: Theoretical background and model description. Bound.-Layer Meteorol., 95, 343−368, https://doi.org/10.1023/A:1002676804487.
Boening, C., M. Lebsock, F. Landerer, and G. Stephens, 2012: Snowfall-driven mass change on the East Antarctic ice sheet. Geophys. Res. Lett., 39, L21501, https://doi.org/10.1029/2012GL053316.
Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 1046−1053, https://doi.org/10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2.
Bozkurt, D., R. Rondanelli, J. C. Marín, and R. Garreaud, 2018: Foehn event triggered by an atmospheric river underlies record-setting temperature along continental Antarctica. J. Geophys. Res., 123, 3871−3892, https://doi.org/10.1002/2017JD027796.
Bromwich, D. H., F. M. Robasky, R. I. Cullather, and M. L. van Woert, 1995: The atmospheric hydrologic cycle over the Southern Ocean and Antarctica from operational numerical analyses. Mon. Wea. Rev., 123, 3518−3538, https://doi.org/10.1175/1520-0493(1995)123<3518:TAHCOT>2.0.CO;2.
Browning, K. A., 1997: The dry intrusion perspective of extra-tropical cyclone development. Meteorological Applications, 4, 317−324, https://doi.org/10.1017/S1350482797000613.
Burrows, D. A., C.R. Ferguson, M.A. Campbell, G. Xia, and L.F. Bosart, 2019: An Objective Classification and Analysis of Upper-Level Coupling to the Great Plains Low-Level Jet over the Twentieth Century. J. Climate, 32, 7127−7152, https://doi.org/10.1175/JCLI-D-18-0891.1.
Connolley, W. M., and J. C. King, 1993: Atmospheric water-vapour transport to Antarctica inferred from radiosonde data. Quart. J. Roy. Meteorol. Soc., 119, 325−342, https://doi.org/10.1002/qj.49711951006.
Cordeira, J. M., F. M. Ralph, A. Martin, N. Gaggini, J. R. Spackman, P. J. Neiman, J. J. Rutz, and R. Pierce, 2017: Forecasting atmospheric rivers during CalWater 2015. Bull. Amer. Meteorol. Soc., 98, 449−459, https://doi.org/10.1175/BAMS-D-15-00245.1.
Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteorol. Soc., 137, 553−597, https://doi.org/10.1002/qj.828.
Dufour, A., C. Charrondière, and O. Zolina, 2019: Moisture transport in observations and reanalyses as a proxy for snow accumulation in East Antarctica. The Cryosphere, 13, 413−425, https://doi.org/10.5194/tc-13-413-2019.
Durre, I., and X. G. Yin, 2008: Enhanced radiosonde data for studies of vertical structure. Bull. Amer. Meteorol. Soc., 89, 1257−1262, https://doi.org/10.1175/2008BAMS2603.1.
Durre, I., R. S. Vose, and D. B. Wuertz, 2008: Robust automated quality assurance of radiosonde temperatures. Journal of Applied Meteorology & Climatology, 47, 2081−2095, https://doi.org/10.1175/2008JAMC1809.1.
Durre, I., X. G. Yin, R. S. Vose, S. Applequist, and J. Arnfield, 2016: Integrated Global Radiosonde Archive (IGRA) Version 2. [Sounding data for the full period of record]. NOAA National Centers for Environmental Information, https://doi.org/10.7289/v5x63k0q.
Ferreira, A. P., R. Nieto, and L. Gimeno, 2019: Completeness of radiosonde humidity observations based on the Integrated Global Radiosonde Archive. Earth System Science Data, 11, 603−627, https://doi.org/10.5194/essd-11-603-2019.
Fretwell, P., and Coauthors, 2013: Bedmap2: Improved ice bed, surface and thickness datasets for Antarctica. The Cryosphere, 7, 375−393, https://doi.org/10.5194/tc-7-375-2013.
Gettelman, A., V. P. Walden, L. M. Miloshevich, W. L. Roth, and B. Halter, 2006: Relative humidity over Antarctica from radiosondes, satellites, and a general circulation model. J. Geophys. Res., 111, D09S13, https://doi.org/10.1029/2005JD006636.
Gorodetskaya, I. V., N. P. M. van Lipzig, M. R. van den Broeke, A. Mangold, W. Boot, and C. H. Reijmer, 2013: Meteorological regimes and accumulation patterns at Utsteinen, Dronning Maud Land, East Antarctica: Analysis of two contrasting years. J. Geophys. Res., 118, 1700−1715, https://doi.org/10.1002/jgrd.50177.
Gorodetskaya, I. V., M. Tsukernik, K. Claes, M. F. Ralph, W. D. Neff, and N. P. M. van Lipzig, 2014: The role of atmospheric rivers in anomalous snow accumulation in East Antarctica. Geophys. Res. Lett., 41, 6199−6206, https://doi.org/10.1002/2014GL060881.
Gossart, A., and Coauthors, 2017: Blowing snow detection from ground-based ceilometers: Application to East Antarctica. The Cryosphere, 11, 2755−2772, https://doi.org/10.5194/tc-11-2755-2017.
Guan, B., and D. E. Waliser, 2015: Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies. J. Geophys. Res., 120, 12 514−12 535, https://doi.org/10.1002/2015JD024257.
Hersbach, H., and Coauthors, 2019: Global reanalysis: Goodbye ERA-Interim, hello ERA5. ECMWF Newsletter No. 159, https://doi.org/10.21957/vf291hehd7.
Hirasawa, N., 2017: Japanese activity and plan for YOPP-SH. YOPP-SH Workshop, National Center for Atmospheric Research, Boulder, Colorado, USA, 28 June 2017−29 June 2017. [Available online from http://polarmet.osu.edu/YOPP-SH/Presentations_201706/1_03_Hirasawa.pdf]
Ingleby, B., 2017: An assessment of different radiosonde types 2015/2016. ECMWF Technical Memoranda 807, https://doi.org/10.21957/0nje0wpsa.
Jakobs, C. L., C. H. Reijmer, P. Kuipers Munneke, G. König-Langlo, and M. R. van den Broeke, 2019: Quantifying the snowmelt-albedo feedback at Neumayer Station, East Antarctica. The Cryosphere, 13, 1473−1485, https://doi.org/10.5194/tc-13-1473-2019.
Jensen, M. P., D. J. Holdridge, P. Survo, R. Lehtinen, S. Baxter, T. Toto, and K. L. Johnson, 2016: Comparison of Vaisala radiosondes RS41 and RS92 at the ARM southern Great Plains site. Atmospheric Measurement Techniques, 9, 3115−3129, https://doi.org/10.5194/amt-9-3115-2016.
Jung, T., and Coauthors, 2016: Advancing polar prediction capabilities on daily to seasonal time scales. Bull. Amer. Meteorol. Soc., 97, 1631−1647, https://doi.org/10.1175/BAMS-D-14-00246.1.
Kawai, Y., M. Katsumata, K. Oshima, M. E. Hori, and J. Inoue, 2017: Comparison of Vaisala radiosondes RS41 and RS92 launched over the oceans from the Arctic to the tropics. Atmospheric Measurement Techniques, 10, 2485−2498, https://doi.org/10.5194/amt-10-2485-2017.
King, M. A., R. J. Bingham, P. Moore, P. L. Whitehouse, M. J. Bentley, and G. A. Milne, 2012: Lower satellite-gravimetry estimates of Antarctic sea-level contribution. Nature, 491, 586−589, https://doi.org/10.1038/nature11621.
Kizu, N., T. Sugidachi, E. Kobayashi, S. Hoshino, K. Shimizu, R. Maeda, and M. Fujiwara, 2018: Technical characteristics and GRUAN data processing for the Meisei RS-11G and iMS-100 radiosondes. GRUAN-TD-5). GRUAN Lead Centre, Lindenberg, Germany.
Klöwer, M., T. Jung, G. König-Langlo, and T. Semmler, 2013: Aspects of weather parameters at Neumayer station, Antarctica, and their representation in reanalysis and climate model data. Meteorol. Z., 22, 699−709, https://doi.org/10.1127/0941-2948/2013/0505.
Knippertz, P., H. Wernli, and G. Gläser, 2013: A global climatology of tropical moisture exports. J. Climate, 26, 3031−3045, https://doi.org/10.1175/JCLI-D-12-00401.1.
Kobayashi, E., S. Hoshino, M. Iwabuchi, T. Sugidachi, K. Shimizu, and M. Fujiwara, 2019: Comparison of the GRUAN data products for Meisei RS-11G and Vaisala RS92-SGP radiosondes at Tateno (36.06°N, 140.13°E), Japan. Atmospheric Measurement Techniques, 12, 3039−3065, https://doi.org/10.5194/amt-12-3039-2019.
König-Langlo, G., and B. Loose, 2007: The meteorological observatory at Neumayer stations (GvN and NM-II) Antarctica. Polarforschung, 76, 25−38.
König-Langlo, G., J. C. King, and P. Pettré, 1998: Climatology of the three coastal Antarctic stations Dumont D'urville, Neumayer, and Halley. J. Geophys. Res., 103, 10 935−10 946, https://doi.org/10.1029/97JD00527.
Konishi, H., M. Wada, and T. Endoh, 1998: Seasonal variations of cloud and precipitation at Syowa Station, Antarctica. Annals of Glaciology, 27, 597−602, https://doi.org/10.3189/1998AoG27-1-597-602.
Kurita, N., N. Hirasawa, S. Koga, J. Matsushita, H. C. Steen-Larsen, V. Masson-Delmotte, and Y. Fujiyoshi, 2016: Identification of air masses responsible for warm events on the East Antarctic Coast. SOLA, 12, 307−313, https://doi.org/10.2151/sola.2016-060.
Lenaerts, J. T. M., M. R. van den Broeke, S. J. Déry, G. König-Langlo, J. Ettema, and P. K. Munneke, 2010: Modelling snowdrift sublimation on an Antarctic ice shelf. The Cryosphere, 4, 179−190, https://doi.org/10.5194/tc-4-179-2010.
Lenaerts, J. T. M., E. van Meijgaard, M. R. van den Broeke, S. R. M. Ligtenberg, M. Horwath, and E. Isaksson, 2013: Recent snowfall anomalies in Dronning Maud Land, East Antarctica, in a historical and future climate perspective. Geophys. Res. Lett., 40, 2684−2688, https://doi.org/10.1002/grl.50559.
Murray, F. W., 1967: On the computation of saturation vapor pressure. J. Appl. Meteor, 6, 203−204, https://doi.org/10.1175/1520-0450(1967)006<0203:OTCOSV>2.0.CO;2.
Nash, D., D. Waliser, B. Guan, B., H. C. Ye, and F. M. Ralph, 2018: The role of atmospheric rivers in extratropical and polar hydroclimate. J. Geophys. Res., 123, 6804−6821, https://doi.org/10.1029/2017JD028130.
Nygård, T., T. Valkonen, and T. Vihma, 2013: Antarctic low-tropospheric humidity inversions: 10-yr climatology. J. Climate, 26, 5205−5219, https://doi.org/10.1175/JCLI-D-12-00446.1.
Parish, T. R., 1983: The influence of the Antarctic Peninsula on the wind field over the western Weddell Sea. J. Geophys. Res., 88, 2684−2692, https://doi.org/10.1029/JC088iC04p02684.
Parish, T. R., and D. H. Bromwich, 2007: Reexamination of the near-surface airflow over the Antarctic continent and implications on atmospheric circulations at high southern latitudes. Mon. Wea. Rev., 135, 1961−1973, https://doi.org/10.1175/MWR3374.1.
Ralph, F. M., P. J. Neiman, and G. A. Wick, 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Wea. Rev., 132, 1721−1745, https://doi.org/10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2.
Ralph, F. M., J. M. Cordeira, P. J. Neiman, and M. Hughes, 2016: Landfalling Atmospheric Rivers, the Sierra Barrier Jet, and extreme daily precipitation in northern California’s Upper Sacramento River Watershed. Journal of Hydrometeorology, 17, 1905−1914, https://doi.org/10.1175/JHM-D-15-0167.1.
Ralph, F. M., J. J. Rutz, J. M. Cordeira, M. Dettinger, M. Anderson, D. Reynolds, L. J. Schick, and C. Smallcomb, 2019: A scale to characterize the strength and impacts of atmospheric rivers. Bull. Amer. Meteorol. Soc., 100, 269−289, https://doi.org/10.1175/BAMS-D-18-0023.1.
Rowe, P. M, L. M. Miloshevich, D. D. Turner, and V. P. Walden, 2008: Dry bias in Vaisala RS90 radiosonde humidity profiles over Antarctica. J. Atmos. Oceanic Techol., 25, 1529−1541, https://doi.org/10.1175/2008JTECHA1009.1.
Sato, K., and N. Hirasawa, 2007: Statistics of Antarctic surface meteorology based on hourly data in 1957−2007 at Syowa Station. Polar Science, 1, 1−15, https://doi.org/10.1016/j.polar.2007.05.001.
Schlosser, E., J. G. Powers, M. G. Duda, K. W. Manning, C. H. Reijmer, and M. R. van den Broeke, 2010: An extreme precipitation event in Dronning Maud Land, Antarctica: A case study with the Antarctic Mesoscale Prediction System. Polar Research, 29, 330−344, https://doi.org/10.3402/polar.v29i3.6072.
Schmithüsen, H., 2020: Meteorological synoptical observations from Neumayer Station, 1981-01 to 2019-01, reference list of 457 datasets. PANGAEA, https://doi.pangaea.de/10.1594/PANGAEA.911242.
Schmithüsen, H., and H. Müller, 2019a: Radiosonde measurements from Neumayer Station (2018-11; 2018-12; 2019-01). Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, PANGAEA, https://doi.org/10.1594/PANGAEA.900641.
Schmithüsen, H., and H. Müller, 2019b: Radiosonde measurements from Neumayer Station (2018-12). Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, PANGAEA, https://doi.org/10.1594/PANGAEA.900642.
Schmithüsen, H., and H. Müller, 2019c: Radiosonde measurements from Neumayer Station (2019-01). Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, PANGAEA, https://doi.org/10.1594/PANGAEA.900631.
Schmithüsen, H., S. Arndt, M. Nicolaus, M. Hoppmann, and C. Haas, S. Henning, and G. Heinemann, 2017: German contribution to YOPP-SH, Year of Polar Prediction in the Southern Hemisphere (YOPP-SH). Proc. YOPP-SH Workshop, Colorado, National Center for Atmospheric Research, Boulder, USA, https://doi.org/10013/epic.51386.d001.
Seefeldt, M. W., and J. J. Cassano, 2008: An analysis of low-level jets in the Greater Ross Ice shelf region based on numerical simulations. Mon. Wea. Rev., 136, 4188−4205, https://doi.org/10.1175/2008MWR2455.1.
Shields, C. A., and Coauthors, 2018: Atmospheric River Tracking Method Intercomparison Project (ARTMIP): Project goals and experimental design. Geoscientific Model Development, 11, 2455−2474, https://doi.org/10.5194/gmd-11-2455-2018.
Sinclair, V. A., and H. F. Dacre, 2019: Which extratropical cyclones contribute most to the transport of moisture in the Southern Hemisphere? J. Geophys. Res., 124, 2525−2545, https://doi.org/10.1029/2018JD028766.
Sodemann, H. and A. Stohl, 2013: Moisture origin and meridional transport in atmospheric rivers and their association with multiple cyclones. Mon. Wea. Rev., 141, 2850−2868, https://doi.org/10.1175/MWR-D-12-00256.1.
Souverijns, N., A. Gossart, I. V. Gorodetskaya, S. Lhermitte, A. Mangold, Q. Laffineur, A. Delcloo, and N. P. M. van Lipzig, 2018: How does the ice sheet surface mass balance relate to snowfall? Insights from a ground-based precipitation radar in East Antarctica The Cryosphere, 12, 1987−2003, https://doi.org/10.5194/tc-12-1987-2018.
Stein, A. F., R. R. Draxler, G. D. Rolph, B. J. B. Stunder, M. D. Cohen, and F. Ngan, 2015: NOAA's HYSPLIT atmospheric transport and dispersion modeling system. Bull. Amer. Meteorol. Soc., 96, 2059−2077, https://doi.org/10.1175/BAMS-D-14-00110.1.
Sugidachi, T., and M. Fujiwara, 2013: Correction of the stepwise change observed at 0°C in Meisei RS2-91, RS-01G, and RS-06G Radiosonde relative humidity profiles. J. Meteorol. Soc. Japan, 91, 323−336, https://doi.org/10.2151/jmsj.2013-306.
Sun, B. M., A. Reale, S. Schroeder, D. J. Seidel, and B. Ballish, 2013: Toward improved corrections for radiation-induced biases in radiosonde temperature observations. J. Geophys. Res., 118, 4231−4243, https://doi.org/10.1002/jgrd.50369.
Thyssen, F., and K. Grosfeld, 1988: Ekström ice shelf, Antarctica. Annals of Glaciology, 11, 180−183, https://doi.org/10.3189/S0260305500006510.
Tomasi, C., and Coauthors, 2006: Characterization of the atmospheric temperature and moisture conditions above Dome C (Antarctica) during austral summer and fall months. J. Geophys. Res., 111, D20305, https://doi.org/10.1029/2005JD006976.
Tsukernik, M., and A. H. Lynch, 2013: Atmospheric meridional moisture flux over the Southern Ocean: A story of the Amundsen Sea. J. Climate, 26, 8055−8064, https://doi.org/10.1175/JCLI-D-12-00381.1.
Turner, J. and S. Pendlebury, 2004: The International Antarctic Weather Forecasting Handbook. British Antarctic Survey, Cambridge, UK, 663 pp.
Turner, J., and Coauthors, 2019: The dominant role of extreme precipitation events in Antarctic snowfall variability. Geophys. Res. Lett., 46, 3502−3511, https://doi.org/10.1029/2018GL081517.
van Den Broeke, M. R., and H. Gallée, 1996: Observation and simulation of barrier winds at the western margin of the Greenland ice sheet. Quart. J. Roy. Meteorol. Soc., 122, 1365−1383, https://doi.org/10.1002/qj.49712253407.
van Den Broeke, M. R., and N. P. M. van Lipzig, 2003: Factors controlling the near-surface wind field in Antarctica. Mon. Wea. Rev., 131, 733−743, https://doi.org/10.1175/1520-0493(2003)131<0733:FCTNSW>2.0.CO;2.
van Den Broeke, M., G. König-Langlo, G. Picard, P. Kuipers Munneke, and J. Lenaerts, 2010: Surface energy balance, melt and sublimation at Neumayer Station, East Antarctica. Antarctic Science, 22, 87−96, https://doi.org/10.1017/S0954102009990538.
van Lipzig, N. P. M., and M. R. van den Broeke, 2002: A model study on the relation between atmospheric boundary-layer dynamics and poleward atmospheric moisture transport in Antarctica. Tellus A, 54, 497−511, https://doi.org/10.1034/j.1600-0870.2002.201404.x.
van Wessem, J. M., C. H. Reijmer, W. J. van de Berg, M. R. van den Broeke, A. J. Cook, L. H. van Ulft, and E. van Meijgaard, 2015: Temperature and wind climate of the antarctic peninsula as simulated by a high-resolution regional atmospheric climate model. J. Climate, 28, 7306−7326, https://doi.org/10.1175/JCLI-D-15-0060.1.
Vignon, É., O. Traullé, and A. Berne, 2019: On the fine vertical structure of the low troposphere over the coastal margins of East Antarctica. Atmospheric Chemistry and Physics, 19, 4659−4683, https://doi.org/10.5194/acp-19-4659-2019.
Vömel, H., D. E. David, and K. Smith, 2007: Accuracy of tropospheric and stratospheric water vapor measurements by the cryogenic frost point hygrometer: Instrumental details and observations. J. Geophys. Res., 12, D08305, https://doi.org/10.1029/2006JD007224.
Wille, J. D., V. Favier, A. Dufour, I. V. Gorodetskaya, J. Turner, J., C. Agosta, and F. Codron, 2019: West Antarctic surface melt triggered by atmospheric rivers. Nature Geoscience, 12, 911−916, https://doi.org/10.1038/s41561-019-0460-1.
WMO, 2011a: Guide to climatological practices (WMO-100). World Meteorological Organization, Geneva. [Available from https://public.wmo.int/en/resources/library/guide-climatological-practices-wmo-100].
WMO, 2011b: Manual on Codes-International Codes, Volume I.1, Annex II to the WMO Technical Regulations: Part A—Alphanumeric Codes, WMO No. 306. World Meteorological Organisation, Geneva. [Available from https://library.wmo.int/index.php?lvl=notice_display&id=13617#.XmXcAPmj7wA].
Yamada, K., and N. Hirasawa, 2018: Analysis of a record-breaking strong wind event at Syowa Station in January 2015. J. Geophys. Res., 123, 13 643−13 657, https://doi.org/10.1029/2018JD028877.
Yamanouchi, T., M. Fukuda, H. Ogihara, K. Kawashima, and M. Doi, 2020: Meteorological synoptical observations from station Syowa, 1994-01 to 2019-01, reference list of 300 datasets. PANGAEA. Available from https://doi.pangaea.de/10.1594/PANGAEA.911265.
Zhu, Y., and R. E. Newell, 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725−735, https://doi.org/10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2.