Balmer, M. E., and B. Sulzberger, 1999: Atrazine degradation in irradiated iron/oxalate systems: Effects of pH and oxalate. Environmental Science & Technology, 33, 2418−2424, https://doi.org/10.1021/es9808705.
Boreddy, S. K. R., K. Kawamura, and E. Tachibana, 2017: Long-term (2001−2013) observations of water-soluble dicarboxylic acids and related compounds over the western North Pacific: Trends, seasonality and source apportionment. Scientific Reports, 7, 8518, https://doi.org/10.1038/s41598-017-08745-w.
Chu, B. W., and Coauthors, 2014: Decreasing effect and mechanism of FeSO4 seed particles on secondary organic aerosol in α-pinene photooxidation. Environmental Pollution, 193, 88−93, https://doi.org/10.1016/j.envpol.2014.06.018.
de Lima Perini, J. A., M. Perez-Moya, and R. F. P. Nogueira, 2013: Photo-Fenton degradation kinetics of low ciprofloxacin concentration using different iron sources and pH. Journal of Photochemistry and Photobiology A: Chemistry, 259, 53−58, https://doi.org/10.1016/j.jphotochem.2013.03.002.
de Luca, A., R. F. Dantas, and S. Esplugas, 2014: Assessment of iron chelates efficiency for photo-Fenton at neutral pH. Water Research, 61, 232−242, https://doi.org/10.1016/j.watres.2014.05.033.
Deguillaume, L., M. Leriche, A. Monod, and N. Chaumerliac, 2004: The role of transition metal ions on HOx radicals in clouds: A numerical evaluation of its impact on multiphase chemistry. Atmospheric Chemistry and Physics, 4, 95−110, https://doi.org/10.5194/acp-4-95-2004.
Deguillaume, L., M. Leriche, and N. Chaumerliac, 2005: Impact of radical versus non-radical pathway in the Fenton chemistry on the iron redox cycle in clouds. Chemosphere, 60, 718−724, https://doi.org/10.1016/j.chemosphere.2005.03.052.
El Haddad, I., and Coauthors, 2009: In-cloud processes of methacrolein under simulated conditions−Part 2: Formation of secondary organic aerosol. Atmospheric Chemistry and Physics, 9, 5107−5117, https://doi.org/10.5194/acp-9-5107-2009.
Faust, B. C., and J. Hoigné, 1990: Photolysis of Fe (III)-hydroxy complexes as sources of OH radicals in clouds, fog and rain. Atmos. Environ., 24, 79−89, https://doi.org/10.1016/0960-1686(90)90443-Q.
Faust, B. C., R. G. Zepp, and Technology, 1993: Photochemistry of aqueous iron(III)-polycarboxylate complexes: Roles in the chemistry of atmospheric and surface waters. Environmental Science & Technology, 27, 2517−2522, https://doi.org/10.1021/es00048a032.
Giorio, C., and Coauthors, 2017: Cloud processing of secondary organic aerosol from isoprene and methacrolein photooxidation. The Journal of Physical Chemistry A, 121, 7641−7654, https://doi.org/10.1021/acs.jpca.7b05933.
Guasco, T. L., and Coauthors, 2014: Transition metal associations with primary biological particles in sea spray aerosol generated in a wave channel. Environmental Science & Technology, 48, 1324−1333, https://doi.org/10.1021/es403203d.
Hayyan, M., M. A. Hashim, and I. M. AlNashef, 2016: Superoxide ion: Generation and chemical implications. Chemical Reviews, 116, 3029−3085, https://doi.org/10.1021/acs.chemrev.5b00407.
Herrmann, H., T. Schaefer, A. Tilgner, S. A. Styler, C. Weller, M. Teich, and T. Otto, 2015: Tropospheric aqueous-phase chemistry: Kinetics, mechanisms, and its coupling to a changing gas phase. Chemical Reviews, 115, 4259−4334, https://doi.org/10.1021/cr500447k.
Knight, R. J., and R. N. Sylva, 1975: Spectrophotometric investigation of iron(III) hydrolysis in light and heavy water at 25°C. Journal of Inorganic and Nuclear Chemistry, 37, 779−783, https://doi.org/10.1016/0022-1902(75)80539-2.
Lazrus, A. L., G. L. Kok, S. N. Gitlin, J. A. Lind, and S. E. McLaren, 1985: Automated fluorimetric method for hydrogen peroxide in atmospheric precipitation. Analytical Chemistry, 57, 917−922, https://doi.org/10.1021/ac00281a031.
Legrand, M., S. Preunkert, T. Oliveira, C. A. Pio, S. Hammer, A. Gelencsér, A. Kasper-Giebl, and P. Laj, 2007: Origin of C2−C5 dicarboxylic acids in the European atmosphere inferred from year-round aerosol study conducted at a west-east transect. J. Geophys. Res., 112, D23S07, https://doi.org/10.1029/2006JD008019.
Li, W. J., and Coauthors, 2016: A review of single aerosol particle studies in the atmosphere of East Asia: Morphology, mixing state, source, and heterogeneous reactions. Journal of Cleaner Production, 112, 1330−1349, https://doi.org/10.1016/j.jclepro.2015.04.050.
Lian, L. S., S. W. Yan, B. Yao, S. A. Chan, and W. H. Song, 2017: Photochemical transformation of nicotine in wastewater effluent. Environmental Science & Technology, 51, 11 718−11 730, https://doi.org/10.1021/acs.est.7b03223.
Liati, A., D. Schreiber, P. Dimopoulos Eggenschwiler, and Y. Arroyo Rojas Dasilva, 2013: Metal particle emissions in the exhaust stream of diesel engines: An electron microscope study. Environmental Science & Technology, 47, 14 495−14 501, https://doi.org/10.1021/es403121y.
Liu, Y., and Coauthors, 2009: In-cloud processes of methacrolein under simulated conditions−Part 1: Aqueous phase photooxidation. Atmospheric Chemistry and Physics, 9, 5093−5105, https://doi.org/10.5194/acp-9-5093-2009.
Liu, Y., and Coauthors, 2012: Oligomer and SOA formation through aqueous phase photooxidation of methacrolein and methyl vinyl ketone. Atmos. Environ., 49, 123−129, https://doi.org/10.1016/j.atmosenv.2011.12.012.
Mulazzani, Q. G., M. D'Angelantonio, M. Venturi, M. Z. Hoffman, and M. A. J. Rodgers, 1986: Interaction of formate and oxalate ions with radiation-generated radicals in aqueous solution. Methylviologen as a mechanistic probe. The Journal of Physical Chemistry, 90, 5347−5352, https://doi.org/10.1021/j100412a090.
Nguyen, T. B., M. M. Coggon, R. C. Flagan, and J. H. Seinfeld, 2013: Reactive uptake and photo-Fenton oxidation of glycolaldehyde in aerosol liquid water. Environmental Science & Technology, 47, 4307−4316, https://doi.org/10.1021/es400538j.
Pang, H. W., and Coauthors, 2019: Photochemical aging of guaiacol by Fe(III)-oxalate complexes in atmospheric aqueous phase. Environmental Science & Technology, 53, 127−136, https://doi.org/10.1021/acs.est.8b04507.
Patel, K. B., and R. L. Willson, 1973: Semiquinone free radicals and oxygen. Pulse radiolysis study of one electron transfer equilibria. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 69, 814−825, https://doi.org/10.1039/F19736900814.
Pillar-Little, E. A., and M. I. Guzman, 2018: An overview of dynamic heterogeneous oxidations in the troposphere. Environments, 5, 104, https://doi.org/10.3390/environments5090104.
Rush, J. D., and B. H. J. Bielski, 1985: Pulse radiolytic studies of the reactions of HO2/O2- with Fe (II)/Fe (III) ions. The reactivity of HO2/O2- with ferric ions and its implication on the occurrence of the Haber-Weiss reaction. J. Phys. Chem., 89, 5062−5066, https://doi.org/10.1021/j100269a035.
Sastry, C. S. P., and J. S. V. M. L. Rao, 1996: Determination of doxorubicin hydrochloride by visible spectrophotometry. Talanta, 43, 1827−1835, https://doi.org/10.1016/0039-9140(96)01932-7.
Schöne, L., J. Schindelka, E. Szeremeta, T. Schaefer, D. Hoffmann, K. J. Rudzinski, R. Szmigielski, and H. Herrmann, 2014: Atmospheric aqueous phase radical chemistry of the isoprene oxidation products methacrolein, methyl vinyl ketone, methacrylic acid and acrylic acid-kinetics and product studies. Physical Chemistry Chemical Physics, 16, 6257−6272, https://doi.org/10.1039/C3CP54859G.
Sedlak, D. L., and J. Hoigné, 1993: The role of copper and oxalate in the redox cycling of iron in atmospheric waters. Atmospheric Environment. Part A. General Topics, 27, 2173−2185, https://doi.org/10.1016/0960-1686(93)90047-3.
Seinfeld, J. H., and S. N. Pandis, 2016: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. 3rd ed. Wiley.
Sorooshian, A., and Coauthors, 2006: Oxalic acid in clear and cloudy atmospheres: Analysis of data from international consortium for atmospheric research on transport and transformation 2004. J. Geophys. Res., 111, D23S45, https://doi.org/10.1029/2005JD006880.
Sorooshian, A., Z. Wang, M. M. Coggon, H. H. Jonsson, and B. Ervens, 2013: Observations of sharp oxalate reductions in stratocumulus clouds at variable altitudes: Organic acid and metal measurements during the 2011 E-PEACE campaign. Environmental Science & Technology, 47, 7747−7756, https://doi.org/10.1021/es4012383.
Surdhar, P. S., S. P. Mezyk, and D. A. Armstrong, 1989: Reduction potential of the carboxyl radical anion in aqueous solutions. The Journal of Physical Chemistry, 93, 3360−3363, https://doi.org/10.1021/j100345a094.
Thomas, D. A., and Coauthors, 2016: Real-time studies of iron oxalate-mediated oxidation of glycolaldehyde as a model for photochemical aging of aqueous tropospheric aerosols. Environmental Science & Technology, 50, 12 241−12 249, https://doi.org/10.1021/acs.est.6b03588.
van Pinxteren, D., and Coauthors, 2005: Schmücke hill cap cloud and valley stations aerosol characterisation during FEBUKO (II): Organic compounds. Atmosp. Environ., 39, 4305−4320, https://doi.org/10.1016/j.atmosenv.2005.02.014.
Weller, C., S. Horn, and H. Herrmann, 2013a: Photolysis of Fe(III) carboxylato complexes: Fe(II) quantum yields and reaction mechanisms. Journal of Photochemistry and Photobiology A: Chemistry, 268, 24−36, https://doi.org/10.1016/j.jphotochem.2013.06.022.
Weller, C., S. Horn, and H. Herrmann, 2013b: Effects of Fe(III)-concentration, speciation, excitation-wavelength and light intensity on the quantum yield of iron(III)-oxalato complex photolysis. Journal of Photochemistry and Photobiology A: Chemistry, 255, 41−49, https://doi.org/10.1016/j.jphotochem.2013.01.014.
Weller, C., A. Tilgner, P. Bräuer, and H. Herrmann, 2014: Modeling the impact of iron-carboxylate photochemistry on radical budget and carboxylate degradation in cloud droplets and particles. Environmental Science & Technology, 48, 5652−5659, https://doi.org/10.1021/es4056643.
Zhang, X., Z. M. Chen, and Y. Zhao, 2010: Laboratory simulation for the aqueous OH-oxidation of methyl vinyl ketone and methacrolein: Significance to the in-cloud SOA production. Atmospheric Chemistry and Physics, 10, 9551−9561, https://doi.org/10.5194/acp-10-9551-2010.
Zhou, S. Q., J. Lin, X. F. Qin, Y. Chen, and C. R. Dneg, 2018: Determination of atmospheric alkylamines by ion chromatography using 18-crown-6 as mobile phase additive. Journal of Chromatography A, 1563, 154−161, https://doi.org/10.1016/j.chroma.2018.05.074.
Zuo, Y. G., and J. Hoigne, 1992: Formation of hydrogen peroxide and depletion of oxalic acid in atmospheric water by photolysis of iron(III)-oxalato complexes. Environmental Science & Technology, 26, 1014−1022, https://doi.org/10.1021/es00029a022.