Allabakash, S., and S. Lim, 2022: Anthropogenic influence of temperature changes across East Asia using CMIP6 simulations. Scientific Reports, 12, 11896, https://doi.org/10.1038/S41598-022-16110-9.
Allen, M. R., and S. F. B. Tett, 1999: Checking for model consistency in optimal fingerprinting. Climate Dyn., 15, 419−434, https://doi.org/10.1007/s003820050291.
Allen, M. R., and P. A. Stott, 2003: Estimating signal amplitudes in optimal fingerprinting, part I: Theory. Climate Dyn., 21, 477−491, https://doi.org/10.1007/s00382-003-0313-9.
Ao, X., Q. F. Zhai., Y. Cui, L. D. Shen, X. Y. Zhou, C. Y. Zhao, and L. Zhu, 2020: Analysis of urbanization effect on near-surface wind speed change in Liaoning province. Meteorological Monthly, 46(9), 1153−1164, https://doi.org/10.7519/j.issn.1000-0526.2020.09.003. (in Chinese with English abstract
Bai, Y. Q., H. X. Qi, T. L. Zhao, Y. Zhou, L. Liu, J. Xiong, Z. M. Zhou, and C. G. Cui, 2020: Simulation of the responses of rainstorm in the Yangtze River Middle Reaches to changes in anthropogenic aerosol emissions. Atmos. Environ., 220, 117081, https://doi.org/10.1016/j.atmosenv.2019.117081.
Bian, T., G. Y. Ren, and L. X. Zhang, 2018: Significant urbanization effect on decline of near-surface wind speed at Shijiazhuang station. Climate Change Research, 14(1), 21−30, https://doi.org/10.12006/j.issn.1673-1719.2017.030. (in Chinese with English abstract
Chen, H. P., J. Q. Sun, and W. Q. Lin, 2020: Anthropogenic influence would increase intense snowfall events over parts of the Northern Hemisphere in the future. Environmental Research Letters, 15, 114022, https://doi.org/10.1088/1748-9326/abbc93.
Chen, W., and B. W. Dong, 2018: Drivers of the severity of the extreme hot summer of 2015 in western China. Journal of Meteorological Research, 32, 1002−1010, https://doi.org/10.1007/s13351-018-8004-y.
Chen, W., and B. W. Dong, 2019: Anthropogenic impacts on recent decadal change in temperature extremes over China: Relative roles of greenhouse gases and anthropogenic aerosols. Climate Dyn., 52, 3643−3660, https://doi.org/10.1007/s00382-018-4342-9.
Chen, W., B. W. Dong, L. Wilcox, F. F. Luo, N. Dunstone, and E. J. Highwood, 2019a: Attribution of recent trends in temperature extremes over China: Role of changes in anthropogenic aerosol emissions over Asia. J. Climate, 32, 7539−7560, https://doi.org/10.1175/JCLI-D-18-0777.1.
Chen, Y., and Coauthors, 2019b: Anthropogenic warming has substantially increased the likelihood of July 2017-Like heat waves over central Eastern China. Bull. Amer. Meteor. Soc., 100(1), S91−S95, https://doi.org/10.1175/BAMS-D-18-0087.1.
Chen, Y., Z. Liao, and P. M. Zhai, 2019c: Coincidence of increasingly volatile winters in China with Arctic sea-ice loss during 1980−2018. Environmental Research Letters, 14, 124076, https://doi.org/10.1088/1748-9326/ab5c99.
Chen, Y., W. Li, X. L. Jiang, P. M. Zhai, and Y. L. Luo, 2021: Detectable Intensification of hourly and daily scale precipitation extremes across eastern China. J. Climate, 34, 1185−1201, https://doi.org/10.1175/JCLI-D-20-0462.1.
Chen, Z. Y., Z. X. Liu, L. R. Yin, and W. F. Zheng, 2022: Statistical analysis of regional air temperature characteristics before and after dam construction. Urban Climate, 41, 101085, https://doi.org/10.1016/j.uclim.2022.101085.
Dong, S. Y., Y. Sun, and X. B. Zhang, 2022: Attributing observed increase in extreme precipitation in China to human influence. Environmental Research Letters, 17, 095005, https://doi.org/10.1088/1748-9326/ac888e.
Du, J. Z., K. C. Wang, S. J. Jiang, B. S. Cui, J. K. Wang, C. F. Zhao, and J. P. Li, 2019: Urban dry island effect mitigated urbanization effect on observed warming in China. J. Climate, 32, 5705−5723, https://doi.org/10.1175/JCLI-D-18-0712.1.
Du, J. Z., K. C. Wang, B. S. Cui, S. J. Jiang, and G. C. Wu, 2020: Attribution of the record-breaking consecutive dry days in winter 2017/18 in Beijing. Bull. Amer. Meteor. Soc., 101, S95−S102, https://doi.org/10.1175/BAMS-D-19-0139.1.
Du, J. Z., K. C. Wang, and B. S. Cui, 2021: Attribution of the extreme drought-related risk of wildfires in spring 2019 over Southwest China. Bull. Amer. Meteor. Soc., 102, S83−S90, https://doi.org/10.1175/BAMS-D-20-0165.1.
Du, J. Z., K. Q. Fu, K. C. Wang, and B. S. Cui, 2022: Anthropogenic influences on 2020 extreme dry-wet contrast over South China. Bull. Amer. Meteor. Soc., 103(3), S68−S75, https://doi.org/10.1175/BAMS-D-21-0176.1.
Duan, J. P., and Coauthors, 2017: Weakening of annual temperature cycle over the Tibetan Plateau since the 1870s. Nature Communications, 8, 14008, https://doi.org/10.1038/ncomms14008.
Duan, J. P., and Coauthors, 2019: Detection of human influences on temperature seasonality from the nineteenth century. Nature Sustainability, 2, 484−490, https://doi.org/10.1038/s41893-019-0276-4.
Duan, J. P., and Coauthors, 2021: Anthropogenic influences on the extreme cold surge of early spring 2019 over the Southeastern Tibetan Plateau. Bull. Amer. Meteor. Soc., 102, S111−S116, https://doi.org/10.1175/BAMS-D-20-0215.1.
Duan, W. L., and Coauthors, 2022: Changes in temporal inequality of precipitation extremes over China due to anthropogenic forcings. npj Climate and Atmospheric Science, 5, 33, https://doi.org/10.1038/s41612-022-00255-5.
Freychet, N., S. F. B. Tett, A. A. Abatan, A. Schurer, and Z. Feng, 2021: Widespread persistent extreme cold events over South-East China: Mechanisms, trends, and attribution. J. Geophys. Res., 126, e2020JD033447, https://doi.org/10.1029/2020JD033447.
Fung, K. Y., C.-Y. Tam, T. C. Lee, and Z. Q. Wang, 2021: Comparing the influence of global warming and urban anthropogenic heat on extreme precipitation in urbanized Pearl River Delta area based on dynamical downscaling. Geophys. Res. Atmos., 126, e2021JD035047, https://doi.org/10.1029/2021JD035047.
Gao, L., J. Huang, X. W. Chen, Y. Chen, and M. B. Liu, 2018: Contributions of natural climate changes and human activities to the trend of extreme precipitation. Atmospheric Research, 205, 60−69, https://doi.org/10.1016/j.atmosres.2018.02.006.
Guo, C. W., H. Xiao, H. L. Yang, and W. Wen, 2019: Effects of anthropogenic aerosols on a heavy rainstorm in Beijing. Atmosphere, 10, 162, https://doi.org/10.3390/atmos10040162.
Guo, Y., B. W. Dong, and J. S. Zhu, 2023: Anthropogenic impacts on changes in summer extreme precipitation over China during 1961−2014: Roles of greenhouse gases and anthropogenic aerosols. Climate Dyn., 60, 2633−2643, https://doi.org/10.1007/s00382-022-06453-4.
Hasselmann, K., 1993: Optimal fingerprints for the detection of time-dependent climate change. J. Climate, 6, 1957−1971, https://doi.org/10.1175/1520-0442(1993)006<1957:OFFTDO>2.0.CO;2.
He, Y. Y., K. C. Wang, and D. Qi, 2021: Roles of anthropogenic forcing and natural variability in the record- breaking low sunshine event in January−February 2019 over the Middle-Lower Yangtze Plain. Bull. Amer. Meteor. Soc., 102, S75−S81, https://doi.org/10.1175/BAMS-D-20-0185.1.
Hu, T., and Y. Sun, 2022: Anthropogenic influence on extreme temperatures in China based on CMIP6 models. International Journal of Climatology, 42, 2981−2995, https://doi.org/10.1002/joc.7402.
Hu, Z. Y., and Coauthors, 2021: Was the extended rainy winter 2018/19 over the Middle and Lower Reaches of the Yangtze River driven by anthropogenic forcing. Bull. Amer. Meteor. Soc., 102(1), S67−S73, https://doi.org/10.1175/BAMS-D-20-0127.1.
Hua, Y. P., J. Chai, L. Chen, and P. X. Liu, 2022: The influences of the desert photovoltaic power station on local climate and environment: A case study in Dunhuang photovoltaic industrial park, Dunhuang city, China in 2019. Atmosphere, 13, 1235, https://doi.org/10.3390/atmos13081235.
Huang, S. Z., X. Zhang, L. Yang, N. C. Chen, W.-H. Nam, and D. Niyogi, 2022: Urbanization-induced drought modification: Example over the Yangtze River Basin, China. Urban Climate, 44, 101231, https://doi.org/10.1016/j.uclim.2022.101231.
Huo, F., Z. H. Jiang, H. Y. Ma, Z. H. Li, and Y. P. Li, 2021: Reduction in autumn precipitation over Southwest China by anthropogenic aerosol emissions from Eastern China. Atmospheric Research, 257, 105627, https://doi.org/10.1016/j.atmosres.2021.105627.
IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
Jia, A. L., S. L. Liang, D. D. Wang, B. Jiang, and X. T. Zhang, 2020: Air pollution slows down surface warming over the Tibetan Plateau. Atmospheric Chemistry and Physics, 20, 881−899, https://doi.org/10.5194/acp-20-881-2020.
Jiao, D. L., D. J. Wang, and H. Y. Lv, 2020: Effects of human activities on hydrological drought patterns in the Yangtze River Basin, China. Natural Hazards, 104, 1111−1124, https://doi.org/10.1007/s11069-020-04206-2.
Jin, X. L., P. H. Jiang, H. Y. Du, D. S. Chen, and M. C. Li, 2021: Response of local temperature variation to land cover and land use intensity changes in China over the last 30 years. Climatic Change, 164, 34, https://doi.org/10.1007/s10584-021-02955-y.
Li, C., Y. Sun, F. Zwiers, D. Q. Wang, X. B. Zhang, G. Chen, and H. Wu, 2020a: Rapid warming in summer wet bulb globe temperature in China with human-induced climate change. J. Climate, 33, 5697−5711, https://doi.org/10.1175/JCLI-D-19-0492.1.
Li, C. X., and Coauthors, 2018a: Attribution of extreme precipitation in the lower reaches of the Yangtze River during May 2016. Environmental Research Letters, 13, 014015, https://doi.org/10.1088/1748-9326/aa9691.
Li, H. X., H. P. Chen, B. Sun, H. J. Wang, and J. Q. Sun, 2020b: A detectable anthropogenic shift toward intensified summer hot drought events over Northeastern China. Earth and Space Science, 7, e2019EA000836, https://doi.org/10.1029/2019EA000836.
Li, Q., X. G. Liu, Y. L. Zhong, M. M. Wang, and M. X. Shi, 2021a: Precipitation changes in the Three Gorges Reservoir Area and the relationship with water level change. Sensors, 21, 6110, https://doi.org/10.3390/s21186110.
Li, Q. X., and Coauthors, 2022a: Different climate response persistence causes warming trend unevenness at continental scales. Nature Climate Change, 12, 343−349, https://doi.org/10.1038/s41558-022-01313-9.
Li, R. K., and Coauthors, 2021b: Anthropogenic influences on heavy precipitation during the 2019 extremely wet rainy season in Southern China. Bull. Amer. Meteor. Soc., 102, S103−S109, https://doi.org/10.1175/BAMS-D-20-0135.1.
Li, W., Z. H. Jiang, X. B. Zhang, and L. Li, 2018b: On the emergence of anthropogenic signal in extreme precipitation change over China. Geophys. Res. Lett., 45, 9179−9185, https://doi.org/10.1029/2018GL079133.
Li, W., Y. Chen, and W. L. Chen, 2021c: The emergence of anthropogenic signal in mean and extreme precipitation trend over China by using two large ensembles. Environmental Research Letters, 16, 014052, https://doi.org/10.1088/1748-9326/abd26d.
Li, W., Z. H. Jiang, L. Z. X. Li, J.-J. Luo, and P. M. Zhai, 2022b: Detection and attribution of changes in summer compound hot and dry events over Northeastern China with CMIP6 models. Journal of Meteorological Research, 36, 37−48, https://doi.org/10.1007/s13351-022-1112-8.
Li, X., J. Sha, and Z.-L. Wang, 2021d: Influence of the Three Gorges Reservoir on climate drought in the Yangtze River Basin. Environmental Science and Pollution Research, 28, 29 755−29 772, https://doi.org/10.1007/s11356-021-12704-4.
Li, Y., L. G. Wu, X. Y. Chen, and W. C. Zhou, 2019: Impacts of Three Gorges Dam on regional circulation: A numerical simulation. J. Geophys. Res., 124, 7813−7824, https://doi.org/10.1029/2018JD029970.
Li, Z. Q., L. L. Song, H. Ma, J. J. Xiao, K. Wang, and L. Chen, 2018c: Observed surface wind speed declining induced by urbanization in East China. Climate Dyn., 50, 735−749, https://doi.org/10.1007/s00382-017-3637-6.
Liang, Y. N., Y. P. Cai, X. Wang, C. H. Li, and Q. Liu, 2021: Projected climate impacts of large artificial reservoir impoundment in Yalong River Basin of southwestern China. Journal of Hydrometeorology, 22, 2179−2191, https://doi.org/10.1175/JHM-D-21-0042.1.
Lin, Z. X., B. W. Dong, and Z. P. Wen, 2020: The effects of anthropogenic greenhouse gases and aerosols on the inter-decadal change of the South China Sea summer monsoon in the late twentieth century. Climate Dyn., 54, 3339−3354, https://doi.org/10.1007/s00382-020-05175-9.
Liu, B., and Coauthors, 2021: Increases in anthropogenic heat release from energy consumption lead to more frequent extreme heat events in urban cities. Adv. Atmos. Sci., 38, 430−445, https://doi.org/10.1007/s00376-020-0139-y.
Liu, Y. J., C. Li, Y. Sun, F. Zwiers, X. B. Zhang, Z. H. Jiang, and F. Zheng, 2022: The January 2021 cold air outbreak over Eastern China: Is there a human fingerprint. Bull. Amer. Meteor. Soc., 103, S50−S54, https://doi.org/10.1175/BAMS-D-21-0143.1.
Liu, Z., Y. Ming, C. Zhao, N. C. Lau, J. P. Guo, M. Bollasina, and S. H. L. Yim, 2020: Contribution of local and remote anthropogenic aerosols to a record-breaking torrential rainfall event in Guangdong Province, China. Atmospheric Chemistry and Physics, 20, 223−241, https://doi.org/10.5194/acp-20-223-2020.
Lu, C. H., Y. Sun, and X. B. Zhang, 2018: Multimodel detection and attribution of changes in warm and cold spell durations. Environmental Research Letters, 13, 074013, https://doi.org/10.1088/1748-9326/aacb3e.
Lu, C. H., F. C. Lott, Y. Sun, P. A. Stott, and N. Christidis, 2020a: Detectable anthropogenic influence on changes in summer precipitation in China. J. Climate, 33, 5357−5369, https://doi.org/10.1175/JCLI-D-19-0285.1.
Lu, C. H., Y. Sun, N. Christidis, and P. A. Stott, 2020b: Contribution of global warming and atmospheric circulation to the hottest spring in Eastern China in 2018. Adv. Atmos. Sci., 37, 1285−1294, https://doi.org/10.1007/s00376-020-0088-5.
Lu, C. H., J. Jiang, R. D. Chen, S. Ullah, R. Yu, F. C. Lott, S. F. B. Tett, and B. W. Dong, 2021: Anthropogenic influence on 2019 May-June extremely low precipitation in southwestern China. Bull. Amer. Meteor. Soc., 102, S97−S102, https://doi.org/10.1175/BAMS-D-20-0128.1.
Lu, C. H., Y. Sun, and X. B. Zhang, 2022: The 2020 record-breaking Mei-yu in the Yangtze River Valley of China: The role of anthropogenic forcing and atmospheric circulation. Bull. Amer. Meteor. Soc., 103(3), S98−S104, https://doi.org/10.1175/BAMS-D-21-0161.1.
Luo, F. F., B. W. Dong, F. X. Tian, and S. L. Li, 2019: Anthropogenically forced decadal change of South Asian summer monsoon across the Mid‐1990s. J. Geophys. Res., 124, 806−824, https://doi.org/10.1029/2018JD029195.
Luo, L., H. Xiao, H. L. Yang, H. N. Chen, J. Guo, Y. Sun, and L. Feng, 2020: Raindrop size distribution and microphysical characteristics of a great rainstorm in 2016 in Beijing, China. Atmospheric Research, 239, 104895, https://doi.org/10.1016/j.atmosres.2020.104895.
Ma, F., L. F. Luo, A. Z. Ye, and Q. Y. Duan, 2019: Drought characteristics and propagation in the semiarid Heihe River Basin in Northwestern China. Journal of Hydrometeorology, 20, 59−77, https://doi.org/10.1175/JHM-D-18-0129.1.
Ma, S. M., T. J. Zhou, O. Angélil, and H. Shiogama, 2017a: Increased chances of drought in southeastern periphery of the Tibetan Plateau induced by anthropogenic warming. J. Climate, 30, 6543−6560, https://doi.org/10.1175/JCLI-D-16-0636.1.
Ma, S., and Coauthors, 2017b: Detectable Anthropogenic Shift toward Heavy Precipitation over Eastern China. Journal of Climate, 30, 1381−1396, https://doi.org/10.1175/JCLI-D-16-0311.1.
Mu, J. Y., and Z. L. Wang, 2021: Responses of the East Asian summer monsoon to aerosol forcing in CMIP5 models: The role of upper‐tropospheric temperature change. International Journal of Climatology, 41, 1555−1570, https://doi.org/10.1002/joc.6887.
Omer, A., M. Zhuguo, Z. Y. Zheng, and F. Saleem, 2020: Natural and anthropogenic influences on the recent droughts in Yellow River Basin, China. Science of the Total Environment, 704, 135428, https://doi.org/10.1016/j.scitotenv.2019.135428.
Otto, F. E. L., 2017: Attribution of weather and climate events. Annual Review of Environment and Resources, 42, 627−646, https://doi.org/10.1146/annurev-environ-102016-060847.
Pei, L., Z. W. Yan, D. L. Chen, and S. G. Miao, 2022: The contribution of human-induced atmospheric circulation changes to the record-breaking winter precipitation event over Beijing in February 2020. Bull. Amer. Meteor. Soc., 103, S55−S60, https://doi.org/10.1175/BAMS-D-21-0153.1.
Qian, C., and X. B. Zhang, 2015: Human influences on changes in the temperature seasonality in mid- to high-latitude land areas. J. Climate, 28, 5908−5921, https://doi.org/10.1175/JCLI-D-14-00821.1.
Qian, C., Y. B. Ye, W. X. Zhang, T. J. Zhou, 2022: Heavy rainfall event in Mid-August 2020 in Southwestern China: Contribution of anthropogenic forcings and atmospheric circulation. Bull. Amer. Meteor. Soc., 103(3), S111−S117, https://doi.org/10.1175/BAMS-D-21-0233.1.
Ren, L. W., and Coauthors, 2020: Anthropogenic influences on the persistent night-time heat wave in Summer 2018 over Northeast China. Bull. Amer. Meteor. Soc., 101, S83−S88, https://doi.org/10.1175/BAMS-D-19-0152.1.
Ribes, A., S. Planton, and L. Terray, 2013: Application of regularised optimal fingerprinting to attribution. Part I: Method, properties and idealised analysis. Climate Dyn., 41, 2817−2836, https://doi.org/10.1007/s00382-013-1735-7.
Shepherd, T. G., 2016: A common framework for approaches to extreme event attribution. Current Climate Change Reports, 2, 28−38, https://doi.org/10.1007/s40641-016-0033-y.
Sparrow, S., and Coauthors, 2018: Attributing human influence on the July 2017 Chinese heatwave: The influence of sea-surface temperatures. Environmental Research Letters, 13, 114004, https://doi.org/10.1088/1748-9326/aae356.
Stott, P. A., M. R. Allen, and G. S. Jones, 2003: Estimating signal amplitudes in optimal fingerprinting. Part II: Application to general circulation models. Climate Dyn., 21, 493−500, https://doi.org/10.1007/s00382-003-0314-8.
Su, Q., and B. W. Dong, 2019: Recent decadal changes in heat waves over China: Drivers and mechanisms. J. Climate, 32, 4215−4234, https://doi.org/10.1175/JCLI-D-18-0479.1.
Sun, Y., and C. F. Zhao, 2021: Distinct impacts on precipitation by aerosol radiative effect over three different megacity regions of eastern China. Atmospheric Chemistry and Physics, 21, 16 555−16 574, https://doi.org/10.5194/acp-21-16555-2021.
Sun, Y., T. Hu, X. B. Zhang, H. Wan, P. Stott, and C. H. Lu, 2018: Anthropogenic influence on the Eastern China 2016 super cold surge. Bull. Amer. Meteor. Soc., 99, S123−S127, https://doi.org/10.1175/BAMS-D-17-0092.1.
Sun, Y., T. Hu, X. B. Zhang, C. Li, C. H. Lu, G. Y. Ren, and Z. H. Jiang, 2019: Contribution of global warming and urbanization to changes in temperature extremes in Eastern China. Geophys. Res. Lett., 46, 11 426−11 434, https://doi.org/10.1029/2019GL084281.
Sun, Y., X. B. Zhang, Y. H. Ding, D. L. Chen, D. H. Qin, and P. M. Zhai, 2022: Understanding human influence on climate change in China. National Science Review, 9, nwab113, https://doi.org/10.1093/nsr/nwab113.
Tan, X. Z., X. X. Wu, Z. Q. Huang, S. M. Deng, M. C. Hu, and T. Y. Gan, 2022: Detection and attribution of the decreasing precipitation and extreme drought 2020 in southeastern China. J. Hydrol., 610, 127996, https://doi.org/10.1016/j.jhydrol.2022.127996.
Wang, Y., Y. Sun, T. Hu, D. Qin, and L. Song, 2018: Attribution of temperature changes in Western China. Int. J. Climatol, 38, 742−750, https://doi.org/10.1002/joc.5206.
Wang, D.-Q., and Y. Sun, 2022: Effects of anthropogenic forcing and atmospheric circulation on the record-breaking welt bulb heat event over southern China in September 2021. Advances in Climate Change Research, 13, 778−786, https://doi.org/10.1016/j.accre.2022.11.007.
Wang, H., S.-P. Xie, Y. Kosaka, Q. Y. Liu, and Y. Du, 2019: Dynamics of Asian summer monsoon response to anthropogenic aerosol forcing. J. Climate, 32, 843−858, https://doi.org/10.1175/JCLI-D-18-0386.1.
Wang, J., J. M. Feng, and Z. W. Yan, 2018a: Impact of extensive urbanization on summertime rainfall in the Beijing region and the role of local precipitation recycling. J. Geophys. Res., 123, 3323−3340, https://doi.org/10.1002/2017JD027725.
Wang, J., S. F. B. Tett, Z. W. Yan, and J. M. Feng, 2018b: Have human activities changed the frequencies of absolute extreme temperatures in eastern China. Environmental Research Letters, 13, 014012, https://doi.org/10.1088/1748-9326/aa9404.
Wang, J., J. M. Feng, Z. W. Yan, and J. L. Zha, 2020a: Urbanization impact on regional wind stilling: A modeling study in the Beijing-Tianjin-Hebei region of China. J. Geophys. Res., 125, e2020JD033132, https://doi.org/10.1029/2020JD033132.
Wang, J., and Coauthors, 2021a: Anthropogenic emissions and urbanization increase risk of compound hot extremes in cities. Nature Climate Change, 11, 1084−1089, https://doi.org/10.1038/s41558-021-01196-2.
Wang, P., and Coauthors, 2022a: Amplification effect of urbanization on atmospheric aridity over China under past global warming. Earth’s Future, 10, e2021EF002335, https://doi.org/10.1029/2021EF002335.
Wang, S. S., J. P. Huang, and X. Yuan, 2021b: Attribution of 2019 extreme spring-early summer hot drought over Yunnan in Southwestern China. Bull. Amer. Meteor. Soc., 102, S91−S96, https://doi.org/10.1175/BAMS-D-20-0121.1.
Wang, X. X., X. M. Lang, and D. B. Jiang, 2022b: Detectable anthropogenic influence on summer compound hot events over China from 1965 to 2014. Environmental Research Letters, 17, 034042, https://doi.org/10.1088/1748-9326/ac4d4e.
Wang, Y. J., Y. Y. Ren, L. C. Song, and Y. Xiang, 2021c: Responses of extreme high temperatures to urbanization in the Beijing–Tianjin–Hebei urban agglomeration in the context of a changing climate. Meteorological Applications, 28, e2024, https://doi.org/10.1002/met.2024.
Wang, Z. L., J. Y. Mu, M. L. Yang, and X. C. Yu, 2020b: Reexamining the mechanisms of East Asian summer monsoon changes in response to Non-East Asian anthropogenic aerosol forcing. J. Climate, 33, 2929−2944, https://doi.org/10.1175/JCLI-D-19-0550.1.
Wen, J. P., J. Chen, W. S. Lin, B. L. Jiang, S. S. Xu, and J. Lan, 2020: Impacts of anthropogenic heat flux and urban Land-Use change on frontal rainfall near coastal regions: A case study of a rainstorm over the Pearl River Delta, South China. J. Appl. Meteorol. Climatol., 59, 363−379, https://doi.org/10.1175/JAMC-D-18-0296.1.
Wu, M. W., Y. L. Luo, F. Chen, and W. K. Wong, 2019: Observed link of extreme hourly precipitation changes to urbanization over coastal South China. J. Appl. Meteorol. Climatol., 58, 1799−1819, https://doi.org/10.1175/JAMC-D-18-0284.1.
Wu, X. Y., Z. C. Hao, Y. Zhang, X. Zhang, and F. H. Hao, 2022: Anthropogenic influence on compound dry and hot events in China based on coupled model intercomparison project phase 6 models. International Journal of Climatology, 42, 4379−4390, https://doi.org/10.1002/joc.7473.
Xia, Z. L., Y. J. Li, W. Zhang, R. S. Chen, S. C. Guo, P. Zhang, and P. J. Du, 2022: Solar photovoltaic program helps turn deserts green in China: Evidence from satellite monitoring. Journal of Environmental Management, 324, 116338, https://doi.org/10.1016/j.jenvman.2022.116338.
Xie, Y. K., J. P. Huang, and Y. Ming, 2019: Robust regional warming amplifications directly following the anthropogenic emission. Earth’s Future, 7, 363−369, https://doi.org/10.1029/2018EF001068.
Xu, H. W., H. P. Chen, and H. J. Wang, 2022: Detectable human influence on changes in precipitation extremes across China. Earth’s Future, 10, e2021EF002409, https://doi.org/10.1029/2021EF002409.
Yang, B., and Coauthors, 2019: Modeling the impacts of urbanization on summer thermal comfort: The role of urban land use and anthropogenic heat. J. Geophys. Res., 124, 6681−6697, https://doi.org/10.1029/2018JD029829.
Yang, J. N., X. Y. Li, W. Peng, F. Wagner, and D. L. Mauzerall, 2018: Climate, air quality and human health benefits of various solar photovoltaic deployment scenarios in China in 2030. Environmental Research Letters, 13, 064002, https://doi.org/10.1088/1748-9326/aabe99.
Yang, S., S. W. Li, B. Chen, Z. M. Xie, and J. Peng, 2021: Responses of heat stress to temperature and humidity changes due to anthropogenic heating and urban expansion in south and North China. Frontiers in Earth Science, 9, 673943, https://doi.org/10.3389/feart.2021.673943.
Yang, Y., N. Zhao, Y. W. Wang, and M. X. Chen, 2022: Variations in summertime compound heat extremes and their connections to urbanization in China during 1980-2020. Environmental Research Letters, 17, 064024, https://doi.org/10.1088/1748-9326/ac61c5.
Yin, H., and Y. Sun, 2018: Detection of anthropogenic influence on fixed threshold indices of extreme temperature. J. Climate, 31, 6341−6352, https://doi.org/10.1175/JCLI-D-17-0853.1.
Yin, H., Y. Sun, and M. G. Donat, 2019: Changes in temperature extremes on the Tibetan Plateau and their attribution. Environmental Research Letters, 14, 124015, https://doi.org/10.1088/1748-9326/ab503c.
Yin, H., Y. Sun, and M.-Y. Li, 2022: Reconstructed temperature change in late summer over the eastern Tibetan Plateau since 1867 CE and the role of anthropogenic forcing. Global and Planetary Change, 208, 103715, https://doi.org/10.1016/j.gloplacha.2021.103715.
Yu, H. Y., and Coauthors, 2022: Attribution of April 2020 exceptional cold spell over Northeast China. Bull. Amer. Meteor. Soc., 103, S61−S67, https://doi.org/10.1175/BAMS-D-21-0175.1.
Yu, R., and P. M. Zhai, 2020: Changes in compound drought and hot extreme events in summer over populated eastern China. Weather and Climate Extremes, 30, 100295, https://doi.org/10.1016/j.wace.2020.100295.
Yuan, X., L. Y. Wang, P. L. Wu, P. Ji, J. Sheffield, and M. Zhang, 2019: Anthropogenic shift towards higher risk of flash drought over China. Nature Communications, 10, 4661, https://doi.org/10.1038/s41467-019-12692-7.
Zha, J. L., D. M. Zhao, J. Wu, and C. Shen, 2021: Terrestrial near-surface wind speed variations in China: Research progress and prospects. Journal of Meteorological Research, 35, 537−556, https://doi.org/10.1007/s13351-021-0143-x.
Zhai, P. M., B. Q. Zhou, and Y. Chen, 2018: A review of climate change attribution studies. Journal of Meteorological Research, 32, 671−692, https://doi.org/10.1007/s13351-018-8041-6.
Zhang, B., B. W. Dong, and R. H. Jin, 2020a: Forced decadal changes in summer precipitation characteristics over China: The roles of greenhouse gases and anthropogenic aerosols. Journal of Meteorological Research, 34, 1226−1241, https://doi.org/10.1007/s13351-020-0060-4.
Zhang, G. F., and Coauthors, 2021: Uneven warming likely contributed to declining near-surface wind speeds in Northern China between 1961 and 2016. J. Geophys. Res., 126, e2020JD033637, https://doi.org/10.1029/2020JD033637.
Zhang, H., C. Zhou, and S. Y. Zhao, 2018: Influences of the internal mixing of anthropogenic aerosols on global aridity change. Journal of Meteorological Research, 32, 723−733, https://doi.org/10.1007/s13351-018-7155-1.
Zhang, L. X., T. J. Zhou, X. L. Chen, P. L. Wu, N. Christidis, and F. C. Lott, 2020b: The late spring drought of 2018 in South China. Bull. Amer. Meteor. Soc., 101, S59−S64, https://doi.org/10.1175/BAMS-D-19-0202.1.
Zhang, S. Q., G. Y. Ren, Y. Y. Ren, and S. KealdrupTysa, 2022a: Linkage of extreme temperature change with atmospheric and locally anthropogenic factors in China mainland. Atmospheric Research, 277, 106307, https://doi.org/10.1016/j.atmosres.2022.106307.
Zhang, T. T., Y. Deng, J. W. Chen, S. Yang, P. Gao, and H. N. Zhang, 2022b: Disentangling physical and dynamical drivers of the 2016/17 record-breaking warm winter in China. Environmental Research Letters, 17, 074024, https://doi.org/10.1088/1748-9326/ac79c1.
Zhang, T. Y., and Coauthors, 2022c: Climate change may outpace current wheat breeding yield improvements in North America. Nature Communications, 13, 5591, https://doi.org/10.1038/s41467-022-33265-1.
Zhang, W. X., and Coauthors, 2020c: Anthropogenic influence on 2018 summer persistent heavy rainfall in Central Western China. Bull. Amer. Meteor. Soc., 101, S65−S70, https://doi.org/10.1175/BAMS-D-19-0147.1.
Zhang, W. X., L. W. Ren, and T. J. Zhou, 2022d: Understanding differences in event attribution results arising from modeling strategy. Journal of Meteorological Research, 36, 49−60, https://doi.org/10.1007/s13351-022-1109-3.
Zhang, X. Y., J. H. Yu, L. Z. X. Li, and W. Li, 2022e: Role of anthropogenic climate change in autumn drought trend over China from 1961 to 2014. Journal of Meteorological Research, 36, 251−260, https://doi.org/10.1007/s13351-022-1178-3.
Zhang, L., X. Chen, and R. Lai, 2020d: Urban signatures of sub-daily extreme precipitation events over a metropolitan region. Atmospheric Research, 246, 105204, https://doi.org/10.1016/j.atmosres.2020.105204.
Zhao, D., L. X. Zhang, and T. J. Zhou, 2022: Detectable anthropogenic forcing on the long-term changes of summer precipitation over the Tibetan Plateau. Climate Dyn., 59, 1939−1952, https://doi.org/10.1007/s00382-022-06189-1.
Zhao, W., W. Chen, S. F. Chen, H. N. Gong, and T. J. Ma, 2021: Roles of anthropogenic forcings in the observed trend of decreasing late-summer precipitation over the East Asian transitional climate zone. Sci Rep, 11, 4935, https://doi.org/10.1038/s41598-021-84470-9.
Zheng, J. L., B. F. Li, Y. N. Chen, Z. S. Chen, and L. S. Lian, 2018: Spatiotemporal variation of upper-air and surface wind speed and its influencing factors in northwestern China during 1980-2012. Theor. Appl. Climatol., 133, 1303−1314, https://doi.org/10.1007/s00704-017-2346-8.
Zhou, B. Q., P. M. Zhai, S. F. B. Tett, and F. C. Lott, 2021a: Detectable anthropogenic changes in daily-scale circulations driving summer rainfall shifts over eastern China. Environmental Research Letters, 16, 074044, https://doi.org/10.1088/1748-9326/ac0f28.
Zhou, C. L., D. L. Chen, K. C. Wang, A. G. Dai, and D. Qi, 2020: Conditional attribution of the 2018 summer extreme heat over northeast China: Roles of urbanization, global warming, and warming-induced circulation changes. Bull. Amer. Meteor. Soc., 101, S71−S76, https://doi.org/10.1175/BAMS-D-19-0197.1.
Zhou, T. J., and W. X. Zhang, 2021: Anthropogenic warming of Tibetan Plateau and constrained future projection. Environmental Research Letters, 16, 044039, https://doi.org/10.1088/1748-9326/abede8.
Zhou, T. J., L. W. Ren, and W. X. Zhang, 2021b: Anthropogenic influence on extreme Meiyu rainfall in 2020 and its future risk. Science China Earth Sciences, 64, 1633−1644, https://doi.org/10.1007/s11430-020-9771-8.
Zhuang, B. L., and Coauthors, 2019: The direct effects of black carbon aerosols from different source sectors in East Asia in summer. Climate Dyn., 53, 5293−5310, https://doi.org/10.1007/s00382-019-04863-5.