Chakraborty, S., A. Adhikari, and A. Maitra, 2016: Rainfall estimation from liquid water content and precipitable water content data over land, ocean and plateau. Atmospheric Research, 167, 265−274, https://doi.org/10.1016/j.atmosres.2015.08.012.
Chen, G. X., W. M. Sha, and T. Iwasaki, 2009: Diurnal variation of precipitation over southeastern China: Spatial distribution and its seasonality. J. Geophys. Res., 114, D13103, https://doi.org/10.1029/2008JD011103.
Chen, G., Sha, W., Sawada, M., and Iwasaki, T, 2013: Influence of summer monsoon diurnal cycle on moisture transport and precipitation over eastern China. J. Geophys. Res. Atmos., 118, 3163−3177, https://doi.org/10.1002/jgrd.50337.
Chen, G. X., R. Y. Lan, W. X. Zeng, H. Pan, and W. B. Li, 2018a: Diurnal variations of rainfall in surface and satellite observations at the monsoon coast (South China). J. Climate, 31, 1703−1724, https://doi.org/10.1175/JCLI-D-17-0373.1.
Chen, H. M., R. C. Yu, and Y. Shen, 2016: A new method to compare hourly rainfall between station observations and satellite products over central-eastern China. Journal of Meteorological Research, 30, 737−757, https://doi.org/10.1007/s13351-016-6002-5.
Chen, H. M., J. Li, and R. C. Yu, 2018b: Warm season nocturnal rainfall over the eastern periphery of the Tibetan Plateau and its relationship with rainfall events in adjacent regions. International Journal of Climatology, 38, 4786−4801, https://doi.org/10.1002/joc.5696.
Chen, J. H., X. Q. Wu, Y. Yin, and H. Xiao, 2015: Characteristics of heat sources and clouds over eastern china and the tibetan plateau in boreal summer. J. Climate, 28, 7279−7296, https://doi.org/10.1175/JCLI-D-14-00859.1.
Chen, J. H., X. Q. Wu, Y. Yin, Q. Huang, and H. Xiao, 2017a: Characteristics of cloud systems over the Tibetan Plateau and East China during boreal summer. J. Climate, 30, 3117−3137, https://doi.org/10.1175/JCLI-D-16-0169.1.
Chen, J. H., X. Q. Wu, Y. Yin, C. S. Lu, H. Xiao, Q. Huang, and L. P. Deng, 2019: Thermal effects of the surface heat flux on cloud systems over the Tibetan Plateau in boreal summer. J. Climate, 32, 4699−4714, https://doi.org/10.1175/JCLI-D-18-0604.1.
Chen, J., X. Wu, Y. Yin, and C. Lu, 2020: Large-Scale Circulation Environment and Microphysical Characteristics of the Cloud Systems Over the Tibetan Plateau in Boreal Summer. Earth and Space Science, 7, e2020EA001154, https://doi.org/10.1029/2020EA001154.
Chen, T. C., W. R. Huang, and M. C. Yen, 2011: Interannual variation of the late spring-early summer monsoon rainfall in the Northern Part of the South China Sea. J. Climate, 24, 4295−4313, https://doi.org/10.1175/2011JCLI3930.1.
Chen, Y., and P. M. Zhai, 2015: Synoptic-scale precursors of the East Asia/Pacific teleconnection pattern responsible for persistent extreme precipitation in the Yangtze River Valley. Quart. J. Roy. Meteor. Soc., 141, 1389−1403, https://doi.org/10.1002/qj.2448.
Chen, Y. L., Y. F. Fu, T. Xian, and X. Pan, 2017b: Characteristics of cloud cluster over the steep southern slopes of the Himalayas observed by CloudSat. International Journal of Climatology, 37, 4043−4052, https://doi.org/10.1002/joc.4992.
Clark, T. L., W. D. Hall, and J. L. Coen, 1996: Source code documentation for the clark-hall cloud-scale model: Code version G3CH01. NCAR Tech. Note NCAR/TN-426+STR, 137 pp.
Dai, A. G., 2001: Global precipitation and thunderstorm frequencies. Part II: Diurnal variations. J. Climate, 14, 1112−1128, https://doi.org/10.1175/1520-0442(2001)014<1112:GPATFP>2.0.CO;2.
Dai, A. G., K. E. Trenberth, and T. R. Karl, 1999: Effects of clouds, soil moisture, precipitation, and water vapor on diurnal temperature range. J. Climate, 12, 2451−2473, https://doi.org/10.1175/1520-0442(1999)012<2451:EOCSMP>2.0.CO;2.
Dai, A. G., X. Lin, and K. L. Hsu, 2007: The frequency, intensity, and diurnal cycle of precipitation in surface and satellite observations over low- and mid-latitudes. Climate Dyn., 29, 727−744, https://doi.org/10.1007/s00382-007-0260-y.
Dee, D. P., and Coauthors, 2011: The ERA-interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553−597, https://doi.org/10.1002/qj.828.
Ding, Y. H., 1992: Summer monsoon rainfalls in China. J. Meteor. Soc. Japan, 70, 373−396, https://doi.org/10.2151/jmsj1965.70.1B_373.
Ding Y. H., and J. C. L. Chan, 2005: The East Asian summer monsoon: An overview. Meteorol. Atmos. Phys., 89, 117−142, https://doi.org/10.1007/s00703-005-0125-z.
Fu, Y. F., G. S. Liu, G. X. Wu, R. C. Yu, Y. P. Xu, Y. Wang, R. Li, and Q. Liu, 2006: Tower mast of precipitation over the central Tibetan Plateau summer. Geophys. Res. Lett., 33, L05802, https://doi.org/10.1029/2005GL024713.
Fu, Y. F., and Coauthors, 2020: Land-surface processes and summer-cloud-precipitation characteristics in the Tibetan Plateau and their effects on downstream weather: A review and perspective. National Science Review, 7, 500−515, https://doi.org/10.1093/nsr/nwz226.
Fujinami, H., S. Nomura, and T. Yasunari, 2005: Characteristics of diurnal variations in convection and precipitation over the southern Tibetan Plateau during summer. SOLA, 1, 49−52, https://doi.org/10.2151/sola.2005-014.
Gao, Y. C., and M. F. Liu, 2013: Evaluation of high-resolution satellite precipitation products using rain gauge observations over the Tibetan Plateau. Hydrology and Earth System Sciences, 17, 837−849, https://doi.org/10.5194/hess-17-837-2013.
Ge, J., Q. L. You, and Y. Q. Zhang, 2019: Effect of Tibetan Plateau heating on summer extreme precipitation in eastern China. Atmos. Res., 218, 364−371, https://doi.org/10.1016/j.atmosres.2018.12.018.
Grabowski, W. W., X. Q. Wu, and M. W. Moncrieff, 1996: Cloud-resolving modeling of tropical cloud systems during phase III of GATE. Part I: Two-dimensional experiments. J. Atmos. Sci., 53, 3684−3709, https://doi.org/10.1175/1520-0469(1996)053<3684:CRMOTC>2.0.CO;2.
Grabowski, W. W., X. Q. Wu, M. W. Moncrieff, and W. D. Hall, 1998: Cloud-resolving modeling of cloud systems during phase III of GATE. Part II: Effects of resolution and the third spatial dimension. J. Atmos. Sci., 55, 3264−3282, https://doi.org/10.1175/1520-0469(1998)055<3264:CRMOCS>2.0.CO;2.
Huang, W. R., and J. C. L. Chan, 2012: Seasonal variation of diurnal and semidiurnal rainfall over Southeast China. Climate Dyn., 39, 1913−1927, https://doi.org/10.1007/s00382-011-1236-5.
Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulations. American Meteorological Society, 84 pp, https://doi.org/10.1007/978-1-935704-36-2.
Koenig, L. R., and F. W. Murray, 1976: Ice-bearing cumulus cloud evolution: Numerical simulation and general comparison against observations. J. Appl. Meteorol. Climatol., 15, 747−762, https://doi.org/10.1175/1520-0450(1976)015<0747:IBCCEN>2.0.CO;2.
Li, J., 2018: Hourly station-based precipitation characteristics over the Tibetan Plateau. International Journal of Climatology, 38, 1560−1570, https://doi.org/10.1002/joc.5281.
Li, J., Chen, J., Lu, C., and Wu, X, 2020a: Impacts of TIPEX-III rawinsondes on the dynamics and thermodynamics over the Eastern Tibetan Plateau in the boreal summer. J. Geophys. Res.: Atmos., 125, e2020JD032635, https://doi.org/10.1029/2020JD032635.
Li, P. X., K. Furtado, T. J. Zhou, H. M. Chen, J. Li, Z. Guo, and C. Xiao, 2020b: The diurnal cycle of East Asian summer monsoon precipitation simulated by the Met Office Unified Model at convection-permitting scales. Climate Dyn., 55, 131−151, https://doi.org/10.1007/s00382-018-4368-z.
Li, Y. Y., and M. H. Zhang, 2016: Cumulus over the Tibetan Plateau in the summer based on CloudSat-CALIPSO data. J. Climate, 29, 1219−1230, https://doi.org/10.1175/JCLI-D-15-0492.1.
Li, Y. Y., and M. H. Zhang, 2017: The role of shallow convection over the Tibetan Plateau. J. Climate, 30, 5791−5803, https://doi.org/10.1175/JCLI-D-16-0599.1.
Li, Y. Y., R. C. Yu, Y. P. Xu, and X. H. Zhang, 2004: Spatial distribution and seasonal variation of cloud over China based on ISCCP data and surface observations. J. Meteor. Soc. Japan, 82, 761−773, https://doi.org/10.2151/jmsj.2004.761.
Liu, W. T., K. B. Katsaros, and J. A. Businger, 1979: Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface. J. Atmos. Sci., 36, 1722−1735, https://doi.org/10.1175/1520-0469(1979)036<1722:BPOASE>2.0.CO;2.
Luo, H. B., and M. Yanai, 1983: The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part I: Precipitation and kinematic analyses. Mon. Wea. Rev., 111, 922−944, https://doi.org/10.1175/1520-0493(1983)111<0922:TLSCAH>2.0.CO;2.
Luo, H. B., and M. Yanai, 1984: The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part II: Heat and moisture budgets. Mon. Wea. Rev., 112, 966−989, https://doi.org/10.1175/1520-0493(1984)112<0966:TLSCAH>2.0.CO;2.
Qie, X. S., X. K. Wu, T. Yuan, J. C. Bian, and D. R. Lu, 2014: Comprehensive pattern of deep convective systems over the Tibetan Plateau-South Asian monsoon region based on TRMM data. J. Climate, 27, 6612−6626, https://doi.org/10.1175/JCLI-D-14-00076.1.
Singh, P., and K. Nakamura, 2009: Diurnal variation in summer precipitation over the central Tibetan Plateau. J. Geophys. Res., 114, D20107, https://doi.org/10.1029/2009JD011788.
Tao, S., and L. Chen, 1987: A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology, C. P. Chang and T. N. Krishnamurti, Eds., Oxford University Press, 60−92.
Wang, M. R., J. Wang, A. M. Duan, J. Yang, and Y. M. Liu, 2019: Quasi-biweekly impact of the atmospheric heat source over the Tibetan Plateau on summer rainfall in Eastern China. Climate Dyn., 53, 4489−4504, https://doi.org/10.1007/s00382-019-04798-x.
Wang, X. C., and M. H. Zhang, 2014: Vertical velocity in shallow convection for different plume types. Journal of Advances in Modeling Earth Systems, 6, 478−489, https://doi.org/10.1002/2014MS000318.
Wu, G. X., Y. M. Liu, B. He, Q. Bao, A. M. Duan, and F. F. Jin, 2012: Thermal controls on the Asian summer monsoon. Scientific Reports, 2, 404, https://doi.org/10.1038/srep00404.
Wu, G. X., A. M. Duan, and Y. M. Liu, 2019: Atmospheric heating source over the Tibetan Plateau and its regional climate impact. Climate Science. https://doi.org/10.1093/acrefore/9780190228620.013.588.
Wu, J., and X. J. Gao, 2013: A gridded daily observation dataset over China region and comparison with the other datasets. Chinese Journal of Geophysics, 56, 1102−1111, https://doi.org/10.6038/cjg20130406. (in Chinese with English abstract
Wu, X. Q., and S. Guimond, 2006: Two- and three-dimensional cloud-resolving model simulations of the mesoscale enhancement of surface heat fluxes by precipitating deep convection. J. Climate, 19, 139−149, https://doi.org/10.1175/JCL3610.1.
Wu, X. Q., W. W. Grabowski, and M. W. Moncrieff, 1998: Long-term behavior of cloud systems in TOGA COARE and their interactions with radiative and surface processes. Part I: Two-dimensional modeling study. J. Atmos. Sci., 55, 2693−2714, https://doi.org/10.1175/1520-0469(1998)055<2693:LTBOCS>2.0.CO;2.
Wu, X. Q., W. D. Hall, W. W. Grabowski, M. W. Moncrieff, W. D. Collins, and J. T. Kiehl, 1999: Long-term behavior of cloud systems in TOGA COARE and their interactions with radiative and surface processes. Part II: Effects of ice microphysics on cloud-radiation interaction. J. Atmos. Sci., 56, 3177−3195, https://doi.org/10.1175/1520-0469(1999)056<3177:LTBOCS>2.0.CO;2.
Wu, X. Q., X. Z. Liang, and S. Park, 2007: Cloud-resolving model simulations over the ARM SGP. Mon. Wea. Rev., 135, 2841−2853, https://doi.org/10.1175/MWR3438.1.
Xu, W. X., and E. J. Zipser, 2011: Diurnal variations of precipitation, deep convection, and lightning over and east of the Eastern Tibetan Plateau. J. Climate, 24, 448−465, https://doi.org/10.1175/2010JCLI3719.1.
Yanai, M., and T. Tomita, 1998: Seasonal and interannual variability of atmospheric heat sources and moisture sinks as determined from NCEP-NCAR reanalysis. J. Climate, 11, 463−482, https://doi.org/10.1175/1520-0442(1998)011<0463:SAIVOA>2.0.CO;2.
Yanai, M., S. Esbensen, and J. H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611−627, https://doi.org/10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.
Yang, K., T. Koike, H. Fujii, T. Tamura, X. D. Xu, L. E. Bian, and M. Y. Zhou, 2004: The daytime evolution of the atmospheric boundary layer and convection over the Tibetan Plateau: Observations and simulations. J. Meteor. Soc. Japan, 82, 1777−1792, https://doi.org/10.2151/jmsj.82.1777.
Yu, R. C., Y. P. Xu, T. J. Zhou, and J. Li, 2007: Relation between rainfall duration and diurnal variation in the warm season precipitation over central eastern China. Geophys. Res. Lett., 34, L13703, https://doi.org/10.1029/2007GL030315.
Zhang, C., Q. H. Tang, and D. L. Chen, 2017: Recent changes in the moisture source of precipitation over the Tibetan Plateau. J. Climate, 30, 1807−1819, https://doi.org/10.1175/JCLI-D-15-0842.1.
Zhao, P., and L. X. Chen, 2001: Interannual variability of atmospheric heat source/sink over the Qinghai—Xizang (Tibetan) Plateau and its relation to circulation. Adv. Atmos. Sci., 18, 106−116, https://doi.org/10.1007/s00376-001-0007-3.
Zhou, T. J., R. C. Yu, H. M. Chen, A. G. Dai, and Y. Pan, 2008: Summer precipitation frequency, intensity, and diurnal cycle over China: A comparison of satellite data with rain gauge observations. J. Climate, 21, 3997−4010, https://doi.org/10.1175/2008JCLI2028.1.