Abdul-Wahab, S. A., S. Y. Al-Saifi, B. A. Alrumhi, M. Y. Abdulraheem, and M. Al-Uraimi, 2004: Determination of the features of the low-level temperature inversions above a suburban site in Oman using radiosonde temperature measurements: Long-term analysis. J. Geophys. Res., 109(D20), D20101, https://doi.org/10.1029/2004JD004543.
Andrews, E., P. J. Sheridan, J. A. Ogren, and R. Ferrare, 2004: In situ aerosol profiles over the Southern Great Plains cloud and radiation test bed site: 1. Aerosol optical properties. J. Geophys. Res., 109, D06208, https://doi.org/10.1029/2003JD004025.
Bilello, M. A., 1966: Survey of Arctic and subarctic temperature inversions. Tech. Rep. 161, Cold Regions Research and Engineering Laboratory, 38 pp.
Bourne, S. M., U. S. Bhatt, J. Zhang, and R. Thoman, 2010: Surface-based temperature inversions in Alaska from a climate perspective. Atmospheric Research, 95, 353−366, https://doi.org/10.1016/j.atmosres.2009.09.013.
Bradley, R. S., F. T. Keimig, and H. F. Diaz, 1992: Climatology of surface-based inversions in the North American Arctic. J. Geophys. Res., 97(D14), 15 699−15 712, https://doi.org/10.1029/92JD01451.
Devasthale, A., and M. A. Thomas, 2012: An investigation of statistical link between inversion strength and carbon monoxide over Scandinavia in winter using AIRS data. Atmos. Environ., 56, 109−114, https://doi.org/10.1016/j.atmosenv.2012.03.042.
Fedorovich, E., P. Kaiser, M. Rau, and E. Plate, 1996: Wind tunnel study of turbulent flow structure in the convective boundary layer capped by a temperature inversion. J. Atmos. Sci., 53(9), 1273−1289, https://doi.org/10.1175/1520-0469(1996)053<1273:WTSOTF>2.0.CO;2.
Fochesatto, G. J., 2015: Methodology for determining multilayered temperature inversions. Atmospheric Measurement Techniques, 8(5), 2051−2060, https://doi.org/10.5194/amt-8-2051-2015.
Fochesatto, G. J., P. Drobinski, C. Flamant, D. Guedalia, C. Sarrat, P. H. Flamant, and J. Pelon, 2001: Evidence of dynamical coupling between the residual layer and the developing convective boundary layer. Bound.-Layer Meteor., 99(3), 451−464, https://doi.org/10.1023/A:1018935129006.
Gillies, R. R., S. Y. Wang, and M. R. Booth, 2010: Atmospheric scale interaction on wintertime intermountain west low-level inversions. Wea. Forecasting, 25(4), 1196−1210, https://doi.org/10.1175/2010WAF2222380.1.
Godowitch, J. M., J. K. S. Ching, and J. F. Clarke, 1985: Evolution of the nocturnal inversion layer at an urban and nonurban location. J. Climate Appl. Meteor., 24(8), 791−804, https://doi.org/10.1175/1520-0450(1985)024<0791:EOTNIL>2.0.CO;2.
Gramsch, E., D. Cáceres, P. Oyola, E. Reyes, Y. Vásquez, M. A. Rubio, and G. Sánchez, 2014: Influence of surface and subsidence thermal inversion on PM2. 5 and black carbon concentration. Atmos. Environ., 98, 290−298, https://doi.org/10.1016/j.atmosenv.2014.08.066.
Holdridge, D., J. Prell, M. Ritsche, and R. Coulter, 2011: Balloon-Borne Sounding System (BBSS) handbook. DOE ARM Tech. Rep. TR-029, 11 pp. [Available online at http://www.arm.gov/Publications//handbooks/].
Holzworth, G. L., 1972: Vertical temperature structure during the 1966 Thanksgiving Week air pollution episode in New York City. Mon. Wea. Rev., 100(6), 445−450, https://doi.org/10.1175/1520-0493(1972)100<0445:VTSDTT>2.3.CO;2.
Iacobellis, S. F., J. R. Norris, M. Kanamitsu, M. Tyree, and D. C. Cayan, 2009: Climate variability and California low-level temperature inversions. Rep. CEC-500-2009-020-F, California Climate Change Center, 62 pp.
Janhäll, S., K. F. G. Olofson, P. U. Andersson, J. B. C. Pettersson, and M. Hallquist, 2006: Evolution of the urban aerosol during winter temperature inversion episodes. Atmos. Environ., 40(28), 5355−5366, https://doi.org/10.1016/j.atmosenv.2006.04.051.
Jefferson, A., 2011: Aerosol Observing System (AOS) handbook. Tech. Rep. DOE/SC-ARM/TR-014, 31 pp.
Kahl, J. D., 1990: Characteristics of the low-level temperature inversion along the Alaskan Arctic Coast. International Journal of Climatology, 10(5), 537−548, https://doi.org/10.1002/joc.3370100509.
Kassomenos, P. A., and I. G. Koletsis, 2005: Seasonal variation of the temperature inversions over Athens, Greece. International Journal of Climatology, 25(12), 1651−1663, https://doi.org/10.1002/joc.1188.
Leukauf, D., A. Gohm, M. W. Rotach, and J. S. Wagner, 2015: The impact of the temperature inversion breakup on the exchange of heat and mass in an idealized valley: Sensitivity to the radiative forcing. Journal of Applied Meteorology and Climatology, 54(11), 2199−2216, https://doi.org/10.1175/JAMC-D-15-0091.1.
Li, J., H. B. Chen, Z. Q. Li, P. C. Wang, M. Cribb, and X. H. Fan, 2015: Low-level temperature inversions and their effect on aerosol condensation nuclei concentrations under different large-scale synoptic circulations. Adv. Atmos. Sci., 32(7), 898−908, https://doi.org/10.1007/s00376-014-4150-z.
Li, Y. Y., J. P. Yan, and X. B. Sui, 2012: Tropospheric temperature inversion over central China. Atmospheric Research, 116, 105−115, https://doi.org/10.1016/j.atmosres.2012.03.009.
Malek, E., T. Davis, R. S. Martin, and P. J. Silva, 2006: Meteorological and environmental aspects of one of the worst national air pollution episodes (January, 2004) in Logan, Cache Valley, Utah, USA. Atmospheric Research, 79(2), 108−122, https://doi.org/10.1016/j.atmosres.2005.05.003.
Malingowski, J., D. Atkinson, J. Fochesatto, J. Cherry, and E. Stevens, 2014: An observational study of radiation temperature inversions in Fairbanks, Alaska. Polar Science, 8(1), 24−39, https://doi.org/10.1016/j.polar.2014.01.002.
Mayfield, J. A., and G. J. Fochesatto, 2013: The layered structure of the winter atmospheric boundary layer in the interior of Alaska. Journal of Applied Meteorology and Climatology, 52(4), 953−973, https://doi.org/10.1175/JAMC-D-12-01.1.
Milionis, A. E., and T. D. Davies, 2008: The effect of the prevailing weather on the statistics of atmospheric temperature inversions. International Journal of Climatology, 28(10), 1385−1397, https://doi.org/10.1002/joc.1613.
Neu, U., T. Künzle, and H. Wanner, 1994: On the relation between ozone storage in the residual layer and daily variation in near-surface ozone concentration−A case study. Bound.-Layer Meteor., 69(3), 221−247, https://doi.org/10.1007/BF00708857.
Öström, E., and K. J. Noone, 2000: Vertical profiles of aerosol scattering and absorption measured in situ during the North Atlantic Aerosol Characterization Experiment (ACE-2). Tellus B: Chemical and Physical Meteorology, 52(2), 526−545, https://doi.org/10.3402/tellusb.v52i2.16176.
Pope, C. A., D. W. Dockery, X. Xu, F. E. Speizer, J. D. Spengler, and B. G. Ferris, 1993: Mortality risks of air-pollution - a prospective cohort study. The American Review of Respiratory Disease, 147(4), A13.
Raga, G. B., and P. R. Jonas, 1995: Vertical distribution of aerosol particles and CCN in clear air around the British Isles. Atmos. Environ., 29(6), 673−684, https://doi.org/10.1016/1352-2310(94)00314-B.
Rap, A., C. E. Scott, D. V. Spracklen, N. Bellouin, P. M. Forster, K. S. Carslaw, A. Schmidt, and G. Mann, 2013: Natural aerosol direct and indirect radiative effects. Geophys. Res. Lett., 40(12), 3297−3301, https://doi.org/10.1002/grl.50441.
Rehkopf, J., M. Newiger, and H. Grassl, 1984: A 2-D model of global aerosol transport. Atmos. Environ., 18(12), 2745−2752, https://doi.org/10.1016/0004-6981(84)90339-1.
Rendón, A. M., J. F. Salazar, C. A. Palacio, V. Wirth, and B. Brötz, 2014: Effects of urbanization on the temperature inversion breakup in a mountain valley with implications for air quality. Journal of Applied Meteorology and Climatology, 53(4), 840−858, https://doi.org/10.1175/JAMC-D-13-0165.1.
Russell, P. B., and J. Heintzenberg, 2000: An overview of the ACE-2 clear sky column closure experiment (CLEARCOLUMN). Tellus B: Chemical and Physical Meteorology, 52(2), 463−483, https://doi.org/10.3402/tellusb.v52i2.16173.
Serreze, M. C., R. C. Schnell, and J. D. Kahl, 1992: Low-level temperature inversions of the Eurasian Arctic and comparisons with Soviet drifting station data. J. Climate, 5(6), 615−629, https://doi.org/10.1175/1520-0442(1992)005<0615:LLTIOT>2.0.CO;2.
Sheridan, P. J., and J. A. Ogren, 1999: Observations of the vertical and regional variability of aerosol optical properties over central and eastern North America. J. Geophys. Res., 104(D14), 16 793−16 805, https://doi.org/10.1029/1999JD900241.
Sheridan, P. J., D. J. Delene, and J. A. Ogren, 2001: Four years of continuous surface aerosol measurements from the department of energy's atmospheric radiation measurement program southern great plains cloud and radiation testbed site. J. Geophys. Res., 106(D18), 20 735−20 747, https://doi.org/10.1029/2001JD000785.
Stull, R. B, 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, 665 pp.
Wallace, J., and P. Kanaroglou, 2009: The effect of temperature inversions on ground-level nitrogen dioxide (NO2) and fine particulate matter (PM2.5) using temperature profiles from the Atmospheric Infrared Sounder (AIRS). Science of the Total Environment, 407(18), 5085−5095, https://doi.org/10.1016/j.scitotenv.2009.05.050.
Wallace, J., D. Corr, and P. Kanaroglou, 2010: Topographic and spatial impacts of temperature inversions on air quality using mobile air pollution surveys. Science of the Total Environment, 408(21), 5086−5096, https://doi.org/10.1016/j.scitotenv.2010.06.020.
Watanabe, O., 1998: Air pollution control technology manual. Overseas Environmental Cooperation Center. [Available online from https://www.env.go.jp/earth/coop/coop/document/01-apctme/contents.html.]
Wendisch, M., S. Mertes, A. Ruggaber, and T. Nakajima, 1996: Vertical profiles of aerosol and radiation and the influence of a temperature inversion: Measurements and radiative transfer calculations. J. Appl. Meteor., 35(10), 1703−1715, https://doi.org/10.1175/1520-0450(1996)035<1703:VPOAAR>2.0.CO;2.
Wolyn, P. G., and T. B. McKee, 1989: Deep stable layers in the intermountain western United States. Mon. Wea. Rev., 117(3), 461−472, https://doi.org/10.1175/1520-0493(1989)117<0461:DSLITI>2.0.CO;2.
Yu, H. B., S. C. Liu, and R. E. Dickinson, 2002: Radiative effects of aerosols on the evolution of the atmospheric boundary layer. J. Geophys. Res., 107(D12), AAC 3-1−AAC 3-14, https://doi.org/10.1029/2001JD000754.