Ackerman, S. A., K. I. Strabala, W. P. Menzel, R. A. Frey, C. C. Moeller, and L. E. Gumley, 1998: Discriminating clear sky from clouds with MODIS. J. Geophys. Res., 103, 32141−32157, https://doi.org/10.1029/1998JD200032.
Bai, T., D. R. Li, K. M. Sun, Y. P. Chen, and W. Z. Li, 2016: Cloud detection for high-resolution satellite imagery using machine learning and multi-feature fusion. Remote Sens., 8, 715, https://doi.org/10.3390/RS8090715.
Baker, M. B., and T. Peter, 2008: Small-scale cloud processes and climate. Nature, 451, 299−300, https://doi.org/10.1038/nature06594.
Baum, B. A., W. P. Menzel, R. A. Frey, D. C. Tobin, R. E. Holz, S. A. Ackerman, A. K. Heidinger, and P. Yang, 2012: MODIS cloud-top property refinements for Collection 6. J. Appl. Meteorol. Climatol., 51, 1145−1163, https://doi.org/10.1175/JAMC-D-11-0203.1.
Bessho, K., and Coauthors, 2016: An introduction to Himawari-8/9-Japan’s new-generation geostationary meteorological satellites. J. Meteor. Soc. Japan, 94, 151−183, https://doi.org/10.2151/jmsj.2016-009.
Breiman, L., 2001: Random forests. Machine Learning, 45, 5−32, https://doi.org/10.1023/A:1010933404324.
Chen, N., W. Li, C. Gatebe, T. Tanikawa, M. Hori, R. Shimada, T. Aoki, and K. Stamnes, 2018: New neural network cloud mask algorithm based on radiative transfer simulations. Remote Sens. Environ., 219, 62−71, https://doi.org/10.1016/j.rse.2018.09.029.
Dessler, A. E., 2010: A determination of the cloud feedback from climate variations over the past decade. Science, 330, 1523−1527, https://doi.org/10.1126/science.1192546.
Dybbroe, A., K.-G. Karlsson, and A. Thoss, 2005: NWCSAF AVHRR cloud detection and analysis using dynamic thresholds and radiative transfer modeling. Part I: Algorithm description. J. Appl. Meteorol., 44, 39−54, https://doi.org/10.1175/JAM-2188.1.
Frey, R. A., S. A. Ackerman, Y. H. Liu, K. I. Strabala, H. Zhang, J. R. Key, and X. Wang, 2008: Cloud detection with MODIS. Part I: Improvements in the MODIS cloud mask for Collection 5. J. Atmos. Oceanic Technol., 25, 1057−1072, https://doi.org/10.1175/2008JTECHA1052.1.
Geoffroy, O., J.-L. Brenguier, and I. Sandu, 2008: Relationship between drizzle rate, liquid water path and droplet concentration at the scale of a stratocumulus cloud system. Atmospheric Chemistry and Physics, 8, 4641−4654, https://doi.org/10.5194/acp-8-4641-2008.
Gomis-Cebolla, J., J. C. Jimenez, and J. A. Sobrino, 2020: MODIS probabilistic cloud masking over the Amazonian evergreen tropical forests: A comparison of machine learning-based methods. Int. J. Remote Sens., 41, 185−210, https://doi.org/10.1080/01431161.2019.1637963.
Heidinger, A. K., A. T. Evan, M. J. Foster, and A. Walther, 2012: A naive bayesian cloud-detection scheme derived from CALIPSO and applied within PATMOS-X. J. Appl. Meteorol. Climatol., 51, 1129−1144, https://doi.org/10.1175/JAMC-D-11-02.1.
Hughes, M. J., and D. J. Hayes, 2014: Automated detection of cloud and cloud shadow in single-date Landsat imagery using neural networks and spatial post-processing. Remote Sensing, 6, 4907−4926, https://doi.org/10.3390/rs6064907.
Imai, T., and R. Yoshida, 2016: Algorithm theoretical basis for Himawari-8 cloud mask product. Meteorological Satellite Center Tech. Note, 61, 17 pp.
Ishida, H., Y. Oishi, K. Morita, K. Moriwaki, and T. Y. Nakajima, 2018: Development of a support vector machine based cloud detection method for MODIS with the adjustability to various conditions. Remote Sens. Environ., 205, 390−407, https://doi.org/10.1016/j.rse.2017.11.003.
Karlsson, K.-G., E. Johansson, and A. Devasthale, 2015: Advancing the uncertainty characterisation of cloud masking in passive satellite imagery: Probabilistic formulations for NOAA AVHRR data. Remote Sens. Environ., 158, 126−139, https://doi.org/10.1016/J.RSE.2014.10.028.
Key, J., 1990: Cloud cover analysis with Arctic Advanced Very High Resolution Radiometer data: 2. classification with spectral and textural measures. J. Geophys. Res., 95, 7661−7675, https://doi.org/10.1029/JD095iD06p07661.
Lai, R. Z., S. W. Teng, B. Q. Yi, H. Letu, S. H. Tang, and C. Liu, 2019: Comparison of cloud properties from Himawari-8 and FengYun-4A geostationary satellite radiometers with MODIS cloud retrievals. Remote Sensing, 11, 1703, https://doi.org/10.3390/rs11141703.
Le Goff, M., J.-Y. Tourneret, H. Wendt, M. Ortner, and M. Spigai, 2017: Deep learning for cloud detection. Proc. 8th International Conf. of Pattern Recognition Systems (ICPRS 2017), Madrid, IET, 1−6, https://doi.org/10.1049/cp.2017.0139.
Letu, H., and Coauthors, 2020: High-resolution retrieval of cloud microphysical properties and surface solar radiation using Himawari-8/AHI next-generation geostationary satellite. Remote Sens. Environ., 239, 111583, https://doi.org/10.1016/J.RSE.2019.111583.
Loveland, T. R., and A. S. Belward, 1997: The international geosphere biosphere programme data and information system Global Land Cover Data Set (DIScover). Acta Astronautica, 41, 681−689, https://doi.org/10.1016/S0094-5765(98)00050-2.
Lyapustin, A., Y. Wang, and R. Frey, 2008: An automatic cloud mask algorithm based on time series of MODIS measurements. J. Geophys. Res., 113, D16207, https://doi.org/10.1029/2007JD009641.
Min, M., and Coauthors, 2017: Developing the science product algorithm testbed for Chinese next-generation geostationary meteorological satellites: Fengyun-4 series. Journal of Meteorological Research, 31, 708−719, https://doi.org/10.1007/S13351-017-6161-Z.
Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riedi, and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41, 459−473, https://doi.org/10.1109/TGRS.2002.808301.
Poulsen, C., U. Egede, D. Robbins, B. Sandeford, K. Tazi, and T. Zhu, 2020: Evaluation and comparison of a machine learning cloud identification algorithm for the SLSTR in polar regions. Remote Sens. Environ., 248, 111999, https://doi.org/10.1016/j.rse.2020.111999.
Rossow, W. B., and L. C. Garder, 1993: Cloud detection using satellite measurements of infrared and visible radiances for ISCCP. J. Climate, 12, 2341−2369, https://doi.org/10.1175/1520-0442(1993)006<2341:CDUSMO>2.0.CO;2.
Sakaida, F., K. Hosoda, M. Moriyama, H. Murakami, A. Mukaida, and H. Kawamura, 2006: Sea surface temperature observation by Global Imager (GLI)/ADEOS-II: Algorithm and accuracy of the product. Journal of Oceanography, 62, 311−319, https://doi.org/10.1007/S10872-006-0056-4.
Saunders, R. W., and K. T. Kriebel, 1988: An improved method for detecting clear sky and cloudy radiances from AVHRR data. Int. J. Remote Sens., 9, 123−150, https://doi.org/10.1080/01431168808954841.
Scornet, E., 2018: Tuning parameters in random forests. ESAIM: Proceedings and Surveys, 60, 144−162, https://doi.org/10.1051/proc/201760144.
Shang, H. Z., L. F. Chen, H. Letu, M. Zhao, S. S. Li, and S. H. Bao, 2017: Development of a daytime cloud and haze detection algorithm for Himawari‐8 satellite measurements over central and eastern China. J. Geophys. Res., 122, 3528−3543, https://doi.org/10.1002/2016JD025659.
Stephens, G. L., and Coauthors, 2002: The CloudSat Mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83, 1771−1790, https://doi.org/10.1175/BAMS-83-12-1771.
Stowe, L. L., P. A. Davis, and E. P. McClain, 1999: Scientific basis and initial evaluation of the CLAVR-1 global clear/cloud classification algorithm for the Advanced Very High Resolution Radiometer. J. Atmos. Oceanic Technol., 16, 656−681, https://doi.org/10.1175/1520-0426(1999)016<0656:SBAIEO>2.0.CO;2.
Strabala, K. I., S. A. Ackerman, and W. P. Menzel, 1994: Cloud properties inferred from 8−12 μm data. J. Appl. Meteorol. Climatol., 33, 212−229, https://doi.org/10.1175/1520-0450(1994)033<0212:CPIFD>2.0.CO;2.
Sulla-Menashe, D., and M. A. Friedl, 2018: User Guide to Collection 6 MODIS Land Cover (MCD12Q1 and MCD12C1) Product. USGS.
Swami, A., and R. Jain, 2013: Scikit-learn: Machine learning in Python. The Journal of Machine Learning Research, 12, 2825−2830.
Thampi, B. V., T. Wong, C. Lukashin, and N. G. Loeb, 2017: Determination of CERES TOA fluxes using machine learning algorithms. Part I: Classification and retrieval of CERES cloudy and clear scenes. J. Atmos. Oceanic Technol., 34, 2329−2345, https://doi.org/10.1175/JTECH-D-16-0183.1.
Visa, A., K. Valkealahti, and O. Simula, 1991: Cloud detection based on texture segmentation by neural network methods. Proc. IEEE International Joint Conference on Neural Networks. Singapore, IEEE, 1001−1006, https://doi.org/10.1109/IJCNN.1991.170529.
Wang, C. X., S. Platnick, S. K. Meyer, Z. B. Zhang, and Y. P. Zhou, 2020: A machine-learning-based cloud detection and thermodynamic-phase classification algorithm using passive spectral observations. Atmospheric Measurement Techniques, 13, 2257−2277, https://doi.org/10.5194/amt-2019-409.
Wang, J. J., C. Liu, M. Min, X. Q. Hu, Q. F. Lu, and H. Letu, 2018: Effects and applications of satellite radiometer 2.25-μm channel on cloud property retrievals. IEEE Trans. Geosci. Remote Sens., 56, 5207−5216, https://doi.org/10.1109/TGRS.2018.2812082.
Wang, X., M. Min, F. Wang, J. P. Guo, B. Li, and S. H. Tang, 2019: Intercomparisons of cloud mask products among Fengyun-4A, Himawari-8, and MODIS. IEEE Trans. Geosci. Remote Sens., 57, 8827−8839, https://doi.org/10.1109/TGRS.2019.2923247.
Winker, D. M., W. H. Hunt, and M. J. McGill, 2007: Initial performance assessment of CALIOP. Geophys. Res. Lett., 34, https://doi.org/10.1029/2007GL030135.
Wylie, D. P., W. P. Menzel, H. M. Woolf, and K. T. Strabala, 1994: Four years of global cirrus cloud statistics using HIRS. J. Climate, 7, 1972−1986, https://doi.org/10.1175/1520-0442(1994)007%3C1972:FYOGCC%3E2.0.CO;2.
Zhang, C. W., X. Y. Zhuge, and F. Yu, 2019: Development of a high spatiotemporal resolution cloud-type classification approach using Himawari-8 and CloudSat. Int. J. Remote Sens., 40, 6464−6481, https://doi.org/10.1080/01431161.2019.1594438.