Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, 489 pp.
Anstey, J. A., and T. G. Shepherd, 2014: High-latitude influence of the quasi-biennial oscillation. Quart. J. Roy. Meteor. Soc., 140, 1−21, https://doi.org/10.1002/qj.2132.
Blackport, R., and J. A. Screen, 2019: Influence of Arctic sea ice loss in autumn compared to that in winter on the atmospheric circulation. Geophys. Res. Lett., 46, 2213−2221, https://doi.org/10.1029/2018GL081469.
Calvo, N., R. García-Herrera, and R. R. Garcia, 2008: The ENSO signal in the stratosphere. Annals of the New York Academy of Sciences, 1146, 16−31, https://doi.org/10.1196/annals.1446.008.
Dameris, M., D. G. Loyola, M. Nützel, M. Coldewey-Egbers, C. Lerot, F. Romahn, and M. van Roozendael, 2020: First description and classification of the ozone hole over the Arctic in boreal spring 2020. Atmospheric Chemistry and Physics Discussions, in press, https: //doi.org/10.5194/acp-2020-746.
Domeisen, D. I. V., C. I. Garfinkel, and A. H. Butler, 2019: The Teleconnection of El Niño southern oscillation to the stratosphere. Rev. Geophys., 57, 5−47, https://doi.org/10.1029/2018RG000596.
Garcia, R. R., D. R. Marsh, D. E. Kinnison, B. A. Boville, and F. Sassi, 2007: Simulation of secular trends in the middle atmosphere, 1950−2003. J. Geophys. Res.: Atmos., 112, D09301, https://doi.org/10.1029/2006JD007485.
García-Herrera, R., N. Calvo, R. R. Garcia, and M. A. Giorgetta, 2006: Propagation of ENSO temperature signals into the middle atmosphere: A comparison of two general circulation models and ERA-40 reanalysis data. J. Geophys. Res.: Atmos., 111, D06101, https://doi.org/10.1029/2005JD006061.
García-Serrano, J., C. Frankignoul, G. Gastineau, and A. de la Cámara, 2015: On the predictability of the winter Euro-Atlantic climate: Lagged influence of autumn Arctic sea ice. J. Climate, 28, 5195−5216, https://doi.org/10.1175/JCLI-D-14-00472.1.
Garfinkel, C. I., and D. L. Hartmann, 2008: Different ENSO teleconnections and their effects on the stratospheric polar vortex. J. Geophys. Res.: Atmos., 113, D18114, https://doi.org/10.1029/2008JD009920.
Gelaro, R., and Coauthors, 2017: The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Climate, 30, 5419−5454, https://doi.org/10.1175/JCLI-D-16-0758.1.
Hamilton, K., 1993: An examination of observed southern oscillation effects in the northern hemisphere stratosphere. J. Atmos. Sci., 50, 3468−3474, https://doi.org/10.1175/1520-0469(1993)050<3468:AEOOSO>2.0.CO;2.
Holton, J. R., and H.-C. Tan, 1980: The Influence of the Equatorial Quasi-Biennial Oscillation on the Global Circulation at 50 mb. J. Atmos. Sci., 37, 2200−2208, https://doi.org/10.1175/1520-0469(1980)037<2200:TIOTEQ>2.0.CO;2.
Hu, D. Z., Z. Y. Guan, W. S. Tian, and R. C. Ren, 2018: Recent strengthening of the stratospheric Arctic vortex response to warming in the central North Pacific. Nature Communications, 9, 1697, https://doi.org/10.1038/s41467-018-04138-3.
Hu, Y. Y., 2020: The very unusual polar stratosphere in 2019-2020. Science Bulletin, 65, 1775−1777, https://doi.org/10.1016/j.scib.2020.07.011.
Hu, Y. Y., and K. K. Tung, 2002: Interannual and decadal variations of planetary wave activity, stratospheric cooling, and northern hemisphere annular mode. J. Climate, 15, 1659−1673, https://doi.org/10.1175/1520-0442(2002)015<1659:IADVOP>2.0.CO;2.
Hu, Y. Y., and K. K. Tung, 2003: Possible ozone-induced long-term changes in planetary wave activity in late winter. J. Climate, 16, 3027−3038, https://doi.org/10.1175/1520-0442(2003)016<3027:POLCIP>2.0.CO;2.
Hu, Y. Y., and Y. Xia, 2013: Extremely cold and persistent stratospheric Arctic vortex in the winter of 2010−2011. Chinese Science Bulletin, 58, 3155−3160, https://doi.org/10.1007/s11434-013-5945-5.
Huang, B. Y., and Coauthors, 2017: Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 8179−8205, https://doi.org/10.1175/JCLI-D-16-0836.1.
Hurwitz, M. M., P. A. Newman, and C. I. Garfinkel, 2011: The Arctic vortex in March 2011: A dynamical perspective. Atmospheric Chemistry and Physics, 11, 11 447−11 453, https://doi.org/10.5194/acp-11-11447-2011.
Hurwitz, M. M., P. A. Newman, and C. I. Garfinkel, 2012: On the influence of North Pacific sea surface temperature on the Arctic winter climate. J. Geophys. Res.: Atmos., 117, D19110, https://doi.org/10.1029/2012JD017819.
Jadin, E. A., K. Wei, Y. A. Zyulyaeva, W. Chen, and L. Wang, 2010: Stratospheric wave activity and the Pacific Decadal Oscillation. Journal of Atmospheric and Solar-Terrestrial Physics, 72, 1163−1170, https://doi.org/10.1016/j.jastp.2010.07.009.
Kim, B.-M., S.-W. Son, S.-K. Min, J.-H. Jeong, S.-J. Kim, X. D. Zhang, T. Shim, and J.-H. Yoon, 2014: Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nature Communications, 5, 4646, https://doi.org/10.1038/ncomms5646.
King, M. P., M. Hell, and N. Keenlyside, 2016: Investigation of the atmospheric mechanisms related to the autumn sea ice and winter circulation link in the northern hemisphere. Climate Dyn., 46, 1185−1195, https://doi.org/10.1007/s00382-015-2639-5.
Lawrence, Z. D., J. Perlwitz, A. H. Butler, G. L. Manney, P. A. Newman, S. H. Lee, and E. R. Nash, 2020: The remarkably strong arctic stratospheric polar vortex of winter 2020: Links to record-breaking Arctic oscillation and ozone loss. J. Geophys. Res.: Atmos., 125, e2020JD033271, https://doi.org/10.1029/2020JD033271.
Manney, G. L., and Coauthors, 2011: Unprecedented Arctic ozone loss in 2011. Nature, 478, 469−475, https://doi.org/10.1038/nature10556.
Manney, G. L., and Coauthors, 2020: Record-low Arctic stratospheric ozone in 2020: MLS observations of chemical processes and comparisons with previous extreme winters. Geophys. Res. Lett., 47, e2020GL089063, https://doi.org/10.1029/2020GL089063.
McKenna, C. M., T. J. Bracegirdle, E. F. Shuckburgh, P. H. Haynes, and M. M. Joshi, 2018: Arctic sea ice loss in different regions leads to contrasting northern hemisphere impacts. Geophys. Res. Lett., 45, 945−954, https://doi.org/10.1002/2017GL076433.
Nakamura, T., K. Yamazaki, K. Iwamoto, M. Honda, Y. Miyoshi, Y. Ogawa, and J. Ukita, 2015: A negative phase shift of the winter AO/NAO due to the recent Arctic sea-ice reduction in late autumn. J. Geophys. Res.: Atmos., 120, 3209−3227, https://doi.org/10.1002/2014JD022848.
Randel, W. J., and F. Wu, 1999: Cooling of the Arctic and Antarctic polar stratospheres due to ozone depletion. J. Climate, 12, 1467−1479, https://doi.org/10.1175/1520-0442(1999)012<1467:COTAAA>2.0.CO;2.
Rao, J., and C. I. Garfinkel, 2020: Arctic ozone loss in March 2020 and its seasonal prediction in CFSv2: A comparative study with the 1997 and 2011 cases. J. Geophys. Res.: Atmos., 125, e2020JD033524, https://doi.org/10.1029/2020JD033524.
Reynolds, R. W., T. M. Smith, C. Y. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 5473−5496, https://doi.org/10.1175/2007JCLI1824.1.
Sun, L. T., C. Deser, and R. A. Tomas, 2015: Mechanisms of stratospheric and tropospheric circulation response to projected Arctic sea ice loss. J. Climate, 28, 7824−7845, https://doi.org/10.1175/JCLI-D-15-0169.1.
WMO, 2018: Scientific assessment of ozone depletion: 2018, Global Ozone Research and Monitoring Project-Report No. 58, Geneva, Switzerland, 588 pp.
Woo, S.-H., M.-K. Sung, S.-W. Son, and J.-S. Kug, 2015: Connection between weak stratospheric vortex events and the Pacific Decadal Oscillation. Climate Dyn., 45, 3481−3492, https://doi.org/10.1007/s00382-015-2551-z.
Xia, Y., Y. Y. Hu, and J. P. Liu, 2020: Comparison of trends in the Hadley circulation between CMIP6 and CMIP5. Science Bulletin, 65, 1667−1674, https://doi.org/10.1016/j.scib.2020.06.011.
Xie, F., J. Li, W. Tian, J. Feng, and Y. Huo, 2012: Signals of El Niño Modoki in the tropical tropopause layer and stratosphere. Atmospheric Chemistry and Physics, 12, 5259−5273, https://doi.org/10.5194/acp-12-5259-2012.