Akoh, R., S. Li, and F. Xiao, 2010: A multi-moment finite volume formulation for shallow water equations on unstructured mesh. J. Comput. Phys., 229, 4567−4590, https://doi.org/10.1016/j.jcp.2010.02.023.
Benoit, R., M. Desgagné, P. Pellerin, S. Pellerin, Y. Chartier, and S. Desjardins, 1997: The Canadian MC2: A semi-Lagrangian, semi-implicit wideband atmospheric model suited for finescale process studies and simulation. Mon. Wea. Rev., 125, 2382−2415, https://doi.org/10.1175/1520-0493(1997)125<2382:TCMASL>2.0.CO;2.
Blaise, S., and A. St-Cyr, 2012: A dynamic hp-adaptive discontinuous Galerkin method for shallow-water flows on the sphere with application to a global tsunami simulation. Mon. Wea. Rev., 140, 978−996, https://doi.org/10.1175/MWR-D-11-00038.1.
Blaise, S., J. Lambrechts, and E. Deleersnijder, 2016: A stabilization for three-dimensional discontinuous Galerkin discretizations applied to nonhydrostatic atmospheric simulations. International Journal for Numerical Methods in Fluids, 81, 558−585, https://doi.org/10.1002/fld.4197.
Chen, C. G., and F. Xiao, 2008: Shallow water model on cubed-sphere by multi-moment finite volume method. J. Comput. Phys., 227, 5019−5044, https://doi.org/10.1016/j.jcp.2008.01.033.
Chen, C. G., J. Z. Bin, and F. Xiao, 2012: A global multimoment constrained finite-volume scheme for advection transport on the hexagonal geodesic grid. Mon. Wea. Rev., 140, 941−955, https://doi.org/10.1175/MWR-D-11-00095.1.
Chen, C. G., J. Z., Bin, F., Xiao, X. L., Li and X. S., Shen, 2014a: A global shallow-water model on an icosahedral-hexagonal grid by a multi-moment constrained finite-volume scheme. Quart. J. Roy. Meteor. Soc., 140, 639−650, https://doi.org/10.1002/qj.2157.
Chen, C. G., X. L., Li, X. S., Shen and F., Xiao, 2014b: Global shallow water models based on multi-moment constrained finite volume method and three quasi-uniform spherical grids. J. Comput. Phys., 271, 191−223, https://doi.org/10.1016/j.jcp.2013.10.026.
Chen, D. H., and Coauthors, 2008: New generation of multi-scale NWP system (GRAPES): General scientific design. Chinese Science Bulletin, 53, 3433−3445, https://doi.org/10.1007/s11434-008-0494-z.
Chen, X., N. Andronova, B. Van Leer, J. E. Penner, J. P. Boyd, C. Jablonowski, and S. J. Lin, 2013: A control-volume model of the compressible Euler equations with a vertical Lagrangian coordinate. Mon. Wea. Rev., 141, 2526−2544, https://doi.org/10.1175/MWR-D-12-00129.1.
Clark, T. L., 1977: A small-scale dynamic model using a terrain-following coordinate transformation. J. Comput. Phys., 24, 186−215, https://doi.org/10.1016/0021-9991(77)90057-2.
Cockburn, B., and C. W. Shu, 1998: The Runge-Kutta discontinuous Galerkin method for conservation laws Ⅴ: Multidimensional systems. J. Comput. Phys., 141, 199−224, https://doi.org/10.1006/jcph.1998.5892.
Dennis, J. M., and Coauthors, 2012: CAM-SE: A scalable spectral element dynamical core for the community atmosphere model. The International Journal of High Performance Computing Applications, 26, 74−89, https://doi.org/10.1177/1094342011428142.
Doms, G., and U. Schättler, 1999: The nonhydrostatic limited-area model LM (Lokal-Modell) of DWD. Part I: Scientific documentation. Deutscher Wetterdienst LM F90 1.35. 172 pp. [Available from Deutscher Wetterdienst, P. O. Box 100465, 63004 Offenbach, Germany.]
Fournier, A., M. A. Taylor, and J. J. Tribbia, 2004: The spectral element atmosphere model (SEAM): High-resolution parallel computation and localized resolution of regional dynamics. Mon. Wea. Rev., 132, 726−748, https://doi.org/10.1175/1520-0493(2004)132<0726:TSEAMS>2.0.CO;2.
Gal-Chen, T., and R. C. J. Somerville, 1975: On the use of a coordinate transformation for the solution of the Navier-Stokes equations. J. Comput. Phys., 17, 209−228, https://doi.org/10.1016/0021-9991(75)90037-6.
Giraldo, F., 2011: The nonhydrostatic unified model of the atmosphere (NUMA): CG dynamical core. [Available online from http://hdl.handle.net/10945/38327.]
Giraldo, F. X., and T. E. Rosmond, 2004: A scalable spectral element Eulerian atmospheric model (SEE-AM) for NWP: Dynamical core tests. Mon. Wea. Rev., 132, 133−153, https://doi.org/10.1175/1520-0493(2004)132<0133:ASSEEA>2.0.CO;2.
Giraldo, F. X., and M. Restelli, 2008: A study of spectral element and discontinuous Galerkin methods for the Navier-Stokes equations in nonhydrostatic mesoscale atmospheric modeling: Equation sets and test cases. J. Comput. Phys., 227, 3849−3877, https://doi.org/10.1016/j.jcp.2007.12.009.
Hesthaven, J. S., and T. Warburton, 2008: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer, 500 pp.
Hodur, R. M., 1997: The naval research laboratory’s coupled ocean/atmosphere mesoscale prediction system (COAMPS). Mon. Wea. Rev., 125, 1414−1430, https://doi.org/10.1175/1520-0493(1997)125<1414:TNRLSC>2.0.CO;2.
Ii, S., and F. Xiao, 2009: High order multi-moment constrained finite volume method. Part I: Basic formulation. J. Comput. Phys., 228, 3668−3707, https://doi.org/10.1016/j.jcp.2009.02.009.
Ii, S., and F. Xiao, 2010: A global shallow water model using high order multi-moment constrained finite volume method and icosahedral grid. J. Comput. Phys., 229, 1774−1796, https://doi.org/10.1016/j.jcp.2009.11.008.
Ii, S., M. Shimuta, and F. Xiao, 2005: A 4th-order and single-cell-based advection scheme on unstructured grids using multi-moments. Computer Physics Communications, 173, 17−33, https://doi.org/10.1016/j.cpc.2005.07.003.
Iskandarani, M., D. B. Haidvogel, J. C. Levin, E. Curchitser, and C. A. Edwards, 2002: Multi-scale geophysical modeling using the spectral element method. Computing in Science & Engineering, 4, 42−48, https://doi.org/10.1109/MCISE.2002.1032428.
Karniadakis, G. E., and S. J. Sherwin, 2005: Spectral/HP Element Methods for Computational Fluid Dynamics. 2nd ed., Oxford University Press, 657 pp.
Levy, M. N., R. D. Nair, and H. M. Tufo, 2007: High-order Galerkin methods for scalable global atmospheric models. Computers & Geosciences, 33, 1022−1035, https://doi.org/10.1016/j.cageo.2006.12.004.
Li, X. L., C. G., Chen, X. S., Shen and F., Xiao, 2013b: A multimoment constrained finite-volume model for nonhydrostatic atmospheric dynamics. Mon. Wea. Rev., 141, 1216−1240, https://doi.org/10.1175/MWR-D-12-00144.1.
Li, X. L., D. H. Chen, X. D. Peng, K. Takahashi, and F. Xiao, 2008: A multimoment finite-volume shallow-water model on the Yin-Yang overset spherical grid. Mon. Wea. Rev., 136, 3066−3086, https://doi.org/10.1175/2007MWR2206.1.
Li, X. L., X. S. Shen, X. D. Peng, F. Xiao, Z. R. Zhuang, and C. G. Chen, 2012: Fourth order transport model on Yin-Yang grid by multi-moment constrained finite volume scheme. Procedia Computer Science, 9, 1004−1013, https://doi.org/10.1016/j.procs.2012.04.108.
Li, X. L., X. S., Shen, X. D., Peng, F., Xiao, Z. R., Zhuang and C. G., Chen, 2013a: An accurate multimoment constrained finite volume transport model on Yin-Yang grids. Adv. Atmos. Sci., 30, 1320−1330, https://doi.org/10.1007/s00376-013-2217-x.
Li, X. L., X. S. Shen, F. Xiao, and C. G. Chen, 2016: An MCV nonhydrostatic atmospheric model with height-based terrain following coordinate: Tests of waves over steep mountains. Advances in Meteorology, 4513823, https://doi.org/10.1155/2016/4513823.
Marras, S., M. Moragues, M. Vázquez, O. Jorba, and G. Houzeaux, 2013: A variational multiscale stabilized finite element method for the solution of the Euler equations of nonhydrostatic stratified flows. J. Comput. Phys., 236, 380−407, https://doi.org/10.1016/j.jcp.2012.10.056.
Nair, R. D., H. W. Choi, and H. M. Tufo, 2009: Computational aspects of a scalable high-order discontinuous Galerkin atmospheric dynamical core. Computers & Fluids, 38, 309−319, https://doi.org/10.1016/j.compfluid.2008.04.006.
Patera, A. T., 1984: A spectral element method for fluid dynamics: Laminar flow in a channel expansion. J. Comput. Phys., 54, 468−488, https://doi.org/10.1016/0021-9991(84)90128-1.
Prusa, J. M., P. K. Smolarkiewicz, and A. A. Wyszogrodzki, 2008: EULAG, a computational model for multiscale flows. Computers & Fluids, 37, 1193−1207, https://doi.org/10.1016/j.compfluid.2007.12.001.
Restelli, M., and F. X. Giraldo, 2009: A conservative discontinuous Galerkin semi-implicit Formulation for the Navier-Stokes equations in nonhydrostatic mesoscale modeling. SIAM Journal on Scientific Computing, 31, 2231−2257, https://doi.org/10.1137/070708470.
Roe, P. L., 1981: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys., 43, 357−372, https://doi.org/10.1016/0021-9991(81)90128-5.
Schär, C., D. Leuenberger, O. Fuhrer, D. Lüthi, and C. Girard, 2002: A new terrain-following vertical coordinate formulation for atmospheric prediction models. Mon. Wea. Rev., 130, 2459−2480, https://doi.org/10.1175/1520-0493(2002)130<2459:ANTFVC>2.0.CO;2.
Shu, C. W., 1988: Total-variation-diminishing time discretizations. SIAM Journal on Scientific and Statistical Computing, 9, 1073−1084, https://doi.org/10.1137/0909073.
Shu, C. W., and S. Osher, 1988: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys., 77, 439−471, https://doi.org/10.1016/0021-9991(88)90177-5.
Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 3465−3485, https://doi.org/10.1016/j.jcp.2007.01.037.
Skamarock, W. C, J. B. Klemp, M. G. Duda, L. D. Fowler, S. H. Park, and T. D. Ringler, 2012: A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and C-grid staggering. Mon. Wea. Rev., 140, 3090−3105, https://doi.org/10.1175/MWR-D-11-00215.1.
Smith, R. B., 1988: Linear theory of stratified flow past an isolated mountain in isosteric coordinates. J. Atmos. Sci., 45, 3889−3896, https://doi.org/10.1175/1520-0469(1988)045<3889:LTOSFP>2.0.CO;2.
Smolarkiewicz, P. K., J. Szmelter, and A. A. Wyszogrodzki, 2013: An unstructured-mesh atmospheric model for nonhydrostatic dynamics. J. Comput. Phys., 254, 184−199, https://doi.org/10.1016/j.jcp.2013.07.027.
Szmelter, J., Z. Zhang, and P. K. Smolarkiewicz, 2015: An unstructured-mesh atmospheric model for nonhydrostatic dynamics: Towards optimal mesh resolution. J. Comput. Phys., 294, 363−381, https://doi.org/10.1016/j.jcp.2015.03.054.
Taylor, M. A., and A. Fournier, 2010: A compatible and conservative spectral element method on unstructured grids. J. Comput. Phys., 229, 5879−5895, https://doi.org/10.1016/j.jcp.2010.04.008.
Thomas, S. J., and R. D. Loft, 2000: Parallel semi-implicit spectral element methods for atmospheric general circulation models. Journal of Scientific Computing, 15, 499−518, https://doi.org/10.1023/A:1011188832645.
Xiao, F., 2004: Unified formulation for compressible and incompressible flows by using multi-integrated moments I: One-dimensional inviscid compressible flow. J. Comput. Phys., 195, 629−654, https://doi.org/10.1016/j.jcp.2003.10.014.
Xiao, F., and S. Ii, 2007: CIP/Multi-moment finite volume method with arbitrary order of accuracy. Proceedings of the Conference on Computational Engineering and Science, 12, 873−876.
Xiao, F., A. Ikebata, and T. Hasegawa, 2005: Numerical simulations of free-interface fluids by a multi-integrated moment method. Comput. Struct., 83, 409−423, https://doi.org/10.1016/j.compstruc.2004.06.005.
Xiao, F., R. Akoh, and S. Ii, 2006: Unified formulation for compressible and incompressible flows by using multi-integrated moments Ⅱ: Multi-dimensional version for compressible and incompressible flows. J. Comput. Phys., 213, 31−56, https://doi.org/10.1016/j.jcp.2005.08.002.
Xie, B., and F. Xiao, 2016: A multi-moment constrained finite volume method on arbitrary unstructured grids for incompressible flows. J. Comput. Phys., 327, 747−778, https://doi.org/10.1016/j.jcp.2016.09.054.
Xue, M., K. K. Droegemeier, and V. Wong, 2000: The advanced regional prediction system (ARPS)—A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification. Meteor. Atmos. Phys., 75, 161−193, https://doi.org/10.1007/s007030070003.
Yabe, T., and T. Aoki, 1991: A universal solver for hyperbolic equations by cubic-polynomial interpolation I. One-dimensional solver. Computer Physics Communications, 66, 219−232, https://doi.org/10.1016/0010-4655(91)90071-R.
Yabe, T., and F. Xiao, and T. Utsumi, 2001: The constrained interpolation profile method for multiphase analysis. J. Comput. Phys., 169, 556−593, https://doi.org/10.1006/jcph.2000.6625.
Zhang, M. P., and C. W. Shu, 2005: An analysis of and a comparison between the discontinuous Galerkin and the Spectral finite volume methods. Computers & Fluids, 34, 581−592, https://doi.org/10.1016/j.compfluid.2003.05.006.
Zhang, P., C. Yang, C. G. Chen, X. L. Li, X. S. Shen, and F. Xiao, 2017: Development of a hybrid parallel MCV-based high-order global shallow-water model. The Journal of Supercomputing, 73, 2823−2842, https://doi.org/10.1007/s11227-017-1958-1.