Akhtar, M., N. Ahmad, and M. J. Booij, 2009: Use of regional climate model simulations as input for hydrological models for the Hindukush-Karakorum-Himalaya region. Hydrology and Earth System Sciences, 13, 1075−1089, https://doi.org/10.5194/hess-13-1075-2009.
Arsenault, R., P. Gatien, B. Renaud, F. Brissette, and J.-L. Martel, 2015: A comparative analysis of 9 multi-model averaging approaches in hydrological continuous streamflow simulation. J. Hydrol., 529, 754−767, https://doi.org/10.1016/j.jhydrol.2015.09.001.
Ashfaq, M., D. Rastogi, R. Mei, D. Touma, and L. R. Leung, 2017: Sources of errors in the simulation of south Asian summer monsoon in the CMIP5 GCMs. Climate Dyn., 49, 193−223, https://doi.org/10.1007/s00382-016-3337-7.
Au-Yeung, A. Y. M., and J. C. L. Chan, 2012: Potential use of a regional climate model in seasonal tropical cyclone activity predictions in the western North Pacific. Climate Dyn., 39, 783−794, https://doi.org/10.1007/s00382-011-1268-x.
Ayugi, B., and Coauthors, 2020: Quantile mapping bias correction on Rossby Centre Regional Climate Models for precipitation analysis over Kenya, East Africa. Water, 12, 801, https://doi.org/10.3390/w12030801.
Baek, H.-J., and Coauthors, 2013: Climate change in the 21st century simulated by HadGEM2-AO under representative concentration pathways. Asia-Pacific Journal of Atmospheric Sciences, 49, 603−618, https://doi.org/10.1007/s13143-013-0053-7.
Bao, J. W., J. M. Feng, and Y. L. Wang, 2015: Dynamical downscaling simulation and future projection of precipitation over China. J. Geophys. Res., 120, 8227−8243, https://doi.org/10.1002/2015JD023275.
Bennett, J. C., M. R. Grose, S. P. Corney, C. J. White, G. K. Holz, J. J. Katzfey, D. A. Post, and N. L. Bindoff, 2014: Performance of an empirical bias-correction of a high-resolution climate dataset. International Journal of Climatology, 34, 2189−2204, https://doi.org/10.1002/joc.3830.
Berg, P., H. Feldmann, and H.-J. Panitz, 2012: Bias correction of high resolution regional climate model data. J. Hydrol., 448−449, 80−92, https://doi.org/10.1016/j.jhydrol.2012.04.026.
Cha, D.-H., D.-K. Lee, and S.-Y. Hong, 2008: Impact of boundary layer processes on seasonal simulation of the East Asian summer monsoon using a regional climate model. Meteorol. Atmos. Phys., 100, 53−72, https://doi.org/10.1007/s00703-008-0295-6.
Chang, C.-P., Y. H. Lei, C.-H. Sui, X. H. Lin, and F. M. Ren, 2012: Tropical cyclone and extreme rainfall trends in East Asian summer monsoon since mid-20th century. Geophys. Res. Lett., 39, L18702, https://doi.org/10.1029/2012GL052945.
Chen, S. F., R. G. Wu, and W. Chen, 2019: Projections of climate changes over mid-high latitudes of Eurasia during boreal spring: Uncertainty due to internal variability. Climate Dyn., 53, 6309−6327, https://doi.org/10.1007/s00382-019-04929-4.
Chen, X. L., Y. M. Liu, and G. X. Wu, 2017: Understanding the surface temperature cold Bias in CMIP5 AGCMs over the Tibetan Plateau. Adv. Atmos. Sci., 34, 1447−1460, https://doi.org/10.1007/s00376-017-6326-9.
Deser, C., A. Phillips, V. Bourdette, and H. Y. Teng, 2012: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527−546, https://doi.org/10.1007/s00382-010-0977-x.
Ding, Y. H., and J. C. L. Chan, 2005: The East Asian summer monsoon: An overview. Meteorol. Atmos. Phys., 89, 117−142, https://doi.org/10.1007/s00703-005-0125-z.
Duan, Q. Y., N. K. Ajami, X. G. Gao, and S. Sorooshian, 2007: Multi-Model ensemble hydrologic prediction using Bayesian model averaging. Advances in Water Resources, 30, 1371−1386, https://doi.org/10.1016/j.advwatres.2006.11.014.
Duan, Q. Y., and T. J. Phillips, 2010: Bayesian estimation of local signal and noise in multimodel simulations of climate change. J. Geophys. Res., 115, D18123, https://doi.org/10.1029/2009JD013654.
Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6(CMIP6) experimental design and organization. Geoscientific Model Development, 9, 1937−1958, https://doi.org/10.5194/gmd-9-1937-2016.
Ezéchiel, O., A. A. Eric, Z. E. Josué, B. I. Eliézer, C. Amédée, and A. Abel, 2016: Comparative study of seven bias correction methods applied to three regional climate models in Mekrou catchment (Benin, West Africa). International Journal of Current Engineering and Technology, 6, 1831−1840.
Fang, G. H., J. Yang, Y. N. Chen, and C. Zammit, 2015: Comparing bias correction methods in downscaling meteorological variables for a hydrologic impact study in an arid area in China. Hydrology and Earth System Sciences, 19, 2547−2559, https://doi.org/10.5194/hess-19-2547-2015.
Fragoso, T. M., W. Bertoli, and F. Louzada, 2018: Bayesian model averaging: A systematic review and conceptual classification. International Statistical Review, 86, 1−28, https://doi.org/10.1111/insr.12243.
Fulakeza, M., L. M. Druyan, and T. N. Krishnamurti, 2002: A simple soil moisture scheme for regional climate simulations in the tropics. Meteorol. Atmos. Phys., 79, 105−126, https://doi.org/10.1007/s703-002-8231-7.
Gao, X. J., and F. Giorgi, 2017: Use of the RegCM System over East Asia: Review and perspectives. Engineering, 3, 766−772, https://doi.org/10.1016/J.ENG.2017.05.019.
Giorgi, F., C. Jones, and G. R. Asrar, 2009: Addressing climate information needs at the regional level: The CORDEX framework. WMO Bulletin, 58, 175−183.
Giorgi, F., and Coauthors, 2012: RegCM4: Model description and preliminary tests over multiple CORDEX domains. Climate Research, 52, 7−29, https://doi.org/10.3354/cr01018.
Grimm, N. B., and Coauthors, 2013: The impacts of climate change on ecosystem structure and function. Frontiers in Ecology and the Environment, 11, 474−482, https://doi.org/10.1890/120282.
Gu, H. H., Z. B. Yu, C. G Yang, Q. Ju, T. Yang, and D. W. Zhang, 2018: High-resolution ensemble projections and uncertainty assessment of regional climate change over China in CORDEX East Asia. Hydrology and Earth System Sciences, 22, 3087−3103, https://doi.org/10.5194/hess-22-3087-2018.
Gulizia, C., and I. Camilloni, 2015: Comparative analysis of the ability of a set of CMIP3 and CMIP5 global climate models to represent precipitation in South America. International Journal of Climatology, 35, 583−595, https://doi.org/10.1002/joc.4005.
Guo, D.-L., J.-Q. Sun, and E.-T. Yu, 2018: Evaluation of CORDEX regional climate models in simulating temperature and precipitation over the Tibetan Plateau. Atmos. Ocean. Sci. Lett., 11, 219−227, https://doi.org/10.1080/16742834.2018.1451725.
Gutowski, W. J., and Coauthors, 2016: WCRP COordinated Regional Downscaling EXperiment (CORDEX): A diagnostic MIP for CMIP6. Geoscientific Model Development, 9, 4087−4095, https://doi.org/10.5194/gmd-9-4087-2016.
Halder, S., S. K. Saha, P. A. Dirmeyer, T. N. Chase, and B. N. Goswami, 2016: Investigating the impact of land-use land-cover change on Indian summer monsoon daily rainfall and temperature during 1951−2005 using a regional climate model. Hydrology and Earth System Sciences, 20, 1765−1784, https://doi.org/10.5194/hess-20-1765-2016.
Ham, S., J.-W. Lee, and K. Yoshimura, 2016: Assessing future climate changes in the East Asian summer and winter monsoon using regional spectral model. J. Meteor. Soc. Japan, 94A, 69−87, https://doi.org/10.2151/jmsj.2015-051.
Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations--the CRU TS3. 10 Dataset. International Journal of Climatology, 34, 623−642, https://doi.org/10.1002/joc.3711.
Hijioka, Y., and Coauthors, 2014: Asia. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change, Barros et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1327-1370.
Huang, J. P., H. P. Yu, X. D. Guan, G. Y. Wang, and R. X. Guo, 2016: Accelerated dryland expansion under climate change. Nature Climate Change, 6, 166−171, https://doi.org/10.1038/NCLIMATE2837.
Hui, P. H., Y. Li, Y. Chen, L. L. Zhang, F. F. Wei, S. Y. Wang, and J. P. Tang, 2019: The impact of radiation parameterization schemes on the regional climate simulations over the CORDEX-EA domain. Atmospheric Research, 224, 81−98, https://doi.org/10.1016/j.atmosres.2019.03.020.
IPCC, 2001: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Houghton et al., Eds., Cambridge University Press, 881 pp.
IPCC, 2013: AISM-Annex I: Atlas of global and regional climate projections supplementary material RCP6.0. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1311-1394.
IPCC, 2014: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Field et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1332 pp.
Jones, A. R., and N. A. Brunsell, 2009: A scaling analysis of soil moisture-precipitation interactions in a regional climate model. Theor. Appl. Climatol., 98, 221−235, https://doi.org/10.1007/s00704-009-0109-x.
Kang, S., and E. A. B. Eltahir, 2018: North China Plain threatened by deadly heatwaves due to climate change and irrigation. Nature Communications, 9, 2894, https://doi.org/10.1038/s41467-018-05252-y.
Kim, C., and M.-S. Suh, 2013: Prospects of using Bayesian model averaging for the calibration of one-month forecasts of surface air temperature over South Korea. Asia-Pacific Journal of Atmospheric Sciences, 49, 301−311, https://doi.org/10.1007/s13143-013-0029-7.
Kim, Y., M. Jun, S.-K. Min, M.-S. Suh, and H.-S. Kang, 2016: Spatial analysis of future East Asian seasonal temperature using two regional climate model simulations. Asia-Pacific Journal of Atmospheric Sciences, 52, 237−249, https://doi.org/10.1007/s13143-016-0022-z.
Lee, J.-Y., and Coauthors, 2017: The long-term variability of Changma in the East Asian summer monsoon system: A review and revisit. Asia-Pacific Journal of Atmospheric Sciences, 53, 257−272, https://doi.org/10.1007/s13143-017-0032-5.
Li, D. L., B. S. Yin, J. L. Feng, A. Dosio, B. Geyer, J. F. Qi, H. Q. Shi, and Z. H. Xu, 2018a: Present climate evaluation and added value analysis of dynamically downscaled simulations of CORDEX−East Asia. J. Appl. Meteorol. Climatol., 57, 2317−2341, https://doi.org/10.1175/JAMC-D-18-0008.1.
Li, J. P., H.-H. Hsu, W.-C. Wang, K.-J. Ha, T. Li, and A. Kitoh, 2018b: East Asian climate under global warming: Understanding and projection. Climate Dyn., 51, 3969−3972, https://doi.org/10.1007/s00382-018-4523-6.
Luo, M., T. Liu, F. H. Meng, Y. C. Duan, A. Frankl, A. M. Bao, and P. De Maeyer, 2018: Comparing bias correction methods used in downscaling precipitation and temperature from regional climate models: A case study from the Kaidu River basin in Western China. Water, 10, 1046, https://doi.org/10.3390/w10081046.
Mann, M. E., and P. H. Gleick, 2015: Climate change and California drought in the 21st century. Proceedings of the National Academy of Sciences of the United States of America, 112, 3858−3859, https://doi.org/10.1073/pnas.1503667112.
Martin, G. M., and Coauthors, 2011: The HadGEM2 family of Met Office Unified Model climate configurations. Geoscientific Model Development, 4, 723−757, https://doi.org/10.5194/gmd-4-723-2011.
McSweeney, C. F., R. G. Jones, R. W. Lee, and D. P. Rowell, 2015: Selecting CMIP5 GCMs for downscaling over multiple regions. Climate Dyn., 44, 3237−3260, https://doi.org/10.1007/s00382-014-2418-8.
Mearns, L. O., D. P. Lettenmaier, and S. McGinnis, 2015: Uses of results of regional climate model experiments for impacts and adaptation studies: The example of NARCCAP. Current Climate Change Reports, 1, 1−9, https://doi.org/10.1007/s40641-015-0004-8.
Meng, X., and Coauthors, 2018: Simulated cold bias being improved by using MODIS time-varying albedo in the Tibetan Plateau in WRF model. Environmental Research Letters, 13, 044028, https://doi.org/10.1088/1748-9326/aab44a.
Miao, C. Y., and Coauthors, 2014: Assessment of CMIP5 climate models and projected temperature changes over Northern Eurasia. Environmental Research Letters, 9, 055007, https://doi.org/10.1088/1748-9326/9/5/055007.
Miao, C. Y., Q. Y. Duan, Q. H. Sun, and J. D. Li, 2013: Evaluation and application of Bayesian multi-model estimation in temperature simulations. Progress in Physical Geography: Earth and Environment, 37, 727−744, https://doi.org/10.1177/0309133313494961.
Miao, C. Y., L. Su, Q. H. Sun, and Q. Y. Duan, 2016: A nonstationary bias-correction technique to remove bias in GCM simulations. J. Geophys. Res., 121, 5718−5735, https://doi.org/10.1002/2015JD024159.
Miao, C. Y., Q. Y. Duan, Q. H. Sun, X. H. Lei, and H. Li, 2019: Non-uniform changes in different categories of precipitation intensity across China and the associated large-scale circulations. Environmental Research Letters, 14, 025004, https://doi.org/10.1088/1748-9326/aaf306.
Ngai, S. T., F. Tangang, and L. Juneng, 2017: Bias correction of global and regional simulated daily precipitation and surface mean temperature over Southeast Asia using quantile mapping method. Global and Planetary Change, 149, 79−90, https://doi.org/10.1016/j.gloplacha.2016.12.009.
Nordhaus, W., 2018: Projections and uncertainties about climate change in an Era of minimal climate policies. American Economic Journal: Economic Policy, 10, 333−360, https://doi.org/10.1257/pol.20170046.
Panofsky, H. A. and G.W. Brier, 1968: Some applications of statistics to meteorology. Earth and Mineral Science Continuing Education, College of Earth and Mineral Sciences.
Park, C., and Coauthors, 2016: Evaluation of multiple regional climate models for summer climate extremes over East Asia. Climate Dyn., 46, 2469−2486, https://doi.org/10.1007/s00382-015-2713-z.
Prömmel, K., B. Geyer, J. M. Jones, and M. Widmann, 2010: Evaluation of the skill and added value of a reanalysis-driven regional simulation for Alpine temperature. International Journal of Climatology, 30, 760−773, https://doi.org/10.1002/joc.1916.
Raftery, A. E., T. Gneiting, F. Balabdaoui, and M. Polakowski, 2005: Using Bayesian model averaging to calibrate forecast ensembles. Mon. Wea. Rev., 133, 1155−1174, https://doi.org/10.1175/MWR2906.1.
Rocheta, E., J. P. Evans, and A. Sharma, 2017: Can bias correction of regional climate model lateral boundary conditions improve low-frequency rainfall variability? J. Climate, 30, 9785−9806, https://doi.org/10.1175/JCLI-D-16-0654.1.
Ruan, Y. F., Z. F. Liu, R. Wang, and Z. J. Yao, 2019: Assessing the performance of CMIP5 GCMs for projection of future temperature change over the Lower Mekong Basin. Atmosphere, 10, 93, https://doi.org/10.3390/atmos10020093.
Salzmann, N., J. Nötzli, C. Hauck, S. Gruber, M. Hoelzle, and W. Haeberli, 2007: Ground surface temperature scenarios in complex high-mountain topography based on regional climate model results. J. Geophys. Res., 112, F02S12, https://doi.org/10.1029/2006JF000527.
Schlaepfer, D. R., and Coauthors, 2017: Climate change reduces extent of temperate drylands and intensifies drought in deep soils. Nature Communications, 8, 14196, https://doi.org/10.1038/ncomms14196.
Singh, A., R. K. Sahoo, A. Nair, U. C. Mohanty, and R. K. Rai, 2017: Assessing the performance of bias correction approaches for correcting monthly precipitation over India through coupled models. Meteorological Applications, 24, 326−337, https://doi.org/10.1002/met.1627.
Soden, B. J., W. D. Collins, and D. R. Feldman, 2018: Reducing uncertainties in climate models. Science, 361, 326−327, https://doi.org/10.1126/science.aau1864.
Sperber, K. R., H. Annamalai, I.-S. Kang, A. Kitoh, A. Moise, A. Turner, B. Wang, and T. Zhou, 2013: The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Climate Dyn., 41, 2711−2744, https://doi.org/10.1007/s00382-012-1607-6.
Sun, Q. H., C. Y. Miao, and Q. Y. Duan, 2015: Comparative analysis of CMIP3 and CMIP5 global climate models for simulating the daily mean, maximum, and minimum temperatures and daily precipitation over China. J. Geophys. Res., 120, 4806−4824, https://doi.org/10.1002/2014JD022994.
Sun, Q. H., C. Y. Miao, and Q. Y. Duan, 2016: Extreme climate events and agricultural climate indices in China: CMIP5 model evaluation and projections. International Journal of Climatology, 36, 43−61, https://doi.org/10.1002/joc.4328.
Sun, Q. H., C. Y. Miao, A. AghaKouchak, I. Mallakpour, D. Y. Ji, and Q. Y. Duan, 2020: Possible increased frequency of ENSO-related dry and wet conditions over some major watersheds in a warming climate. Bull. Amer. Meteor. Soc., 101, E409−E426, https://doi.org/10.1175/BAMS-D-18-0258.1.
Tang, J. P., and Coauthors, 2016: Building Asian climate change scenario by multi-regional climate models ensemble. Part I: Surface air temperature. International Journal of Climatology, 36, 4241−4252, https://doi.org/10.1002/joc.4628.
Tang, J. P., X. G. Sun, P. H. Hui, Y. Li, Q. Zhang, and J. Y. Liu, 2018: Effects of spectral nudging on precipitation extremes and diurnal cycle over CORDEX-East Asia domain. International Journal of Climatology, 38, 4903−4923, https://doi.org/10.1002/joc.5706.
Tangang, F., and Coauthors, 2015: The Southeast Asia Regional Climate Downscaling (SEACLID) / CORDEX Southeast Asia project and the results of its sensitivity experiments of RegCM4 cumulus and ocean fluxes parameterization schemes on temperature and extremes. Proc. EGU General Assembly Conference, EGU, Vienna, Austria.
Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 7183−7192, https://doi.org/10.1029/2000JD900719.
Terink, W., R. T. W. L. Hurkmans, P. J. J. F. Torfs, and R. Uijlenhoet, 2010: Evaluation of a bias correction method applied to downscaled precipitation and temperature reanalysis data for the Rhine basin. Hydrology and Earth System Sciences, 14, 687−703, https://doi.org/10.5194/hess-14-687-2010.
Teutschbein, C., and J. Seibert, 2010: Regional climate models for hydrological impact studies at the catchment scale: A review of recent modeling strategies. Geography Compass, 4, 834−860, https://doi.org/10.1111/j.1749-8198.2010.00357.x.
Teutschbein, C., and J. Seibert, 2012: Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. J. Hydrol., 456−457, 12−29, https://doi.org/10.1016/j.jhydrol.2012.05.052.
von Storch, H., H. Langenberg, and F. Feser, 2000: A spectral nudging technique for dynamical downscaling purposes. Mon. Wea. Rev., 128, 3664−3673, https://doi.org/10.1175/1520-0493(2000)128<3664:ASNTFD>2.0.CO;2.
Wang, D. N., C. Menz, T. Simon, C. Simmer, and C. Ohlwein, 2013: Regional dynamical downscaling with CCLM over East Asia. Meteorol. Atmos. Phys., 121, 39−53, https://doi.org/10.1007/s00703-013-0250-z.
Wilcke, R. A. I., T. Mendlik, and A. Gobiet, 2013: Multi-variable error correction of regional climate models. Climatic Change, 120, 871−887, https://doi.org/10.1007/s10584-013-0845-x.
Woldemeskel, F. M., A. Sharma, B. Sivakumar, and R. Mehrotra, 2016: Quantification of precipitation and temperature uncertainties simulated by CMIP3 and CMIP5 models. J. Geophys. Res., 121, 3−17, https://doi.org/10.1002/2015JD023719.
Yin, Z. L., Q. Feng, L. S. Yang, R. C. Deo, J. F. Adamowski, X. H. Wen, B. Jia, and J. H. Si, 2020: Projected spatial patterns in precipitation and air temperature for China's northwest region derived from high-resolution regional climate models. International Journal of Climatology, 40, 3922−3941, https://doi.org/10.1002/joc.6435.
Zheng, H. Y., C. Y. Miao, J. W. Wu, X. H. Lei, W. H. Liao, and H. Li, 2019: Temporal and spatial variations in water discharge and sediment load on the Loess Plateau, China: A high-density study. Science of the Total Environment, 666, 875−886, https://doi.org/10.1016/j.scitotenv.2019.02.246.
Zhou, W. D., J. P. Tang, X. Y. Wang, S. Y. Wang, X. R. Niu, and Y. Wang, 2016: Evaluation of regional climate simulations over the CORDEX-EA-II domain using the COSMO-CLM model. Asia-Pacific Journal of Atmospheric Sciences, 52, 107−127, https://doi.org/10.1007/s13143-016-0013-0.
Zou, L. W., and T. J. Zhou, 2016: Future summer precipitation changes over CORDEX-East Asia domain downscaled by a regional ocean-atmosphere coupled model: A comparison to the stand-alone RCM. J. Geophys. Res., 121, 2691−2704, https://doi.org/10.1002/2015JD024519.