Andres, R. J., Boden, T. A. & Marland, G. (2016). Annual fossil-fuel CO2 emissions: Mass of emissions gridded by one degree latitude by one degree longitude. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy. https://doi.org/10.3334/CDIAC/ffe.ndp058.2016.
Ballantyne, A., and Coauthors, 2017: Accelerating net terrestrial carbon uptake during the warming hiatus due to reduced respiration. Nature Climate Change, 7, 148−152, https://doi.org/10.1038/nclimate3204.
Battle, M., M. L. Bender, P. P. Tans, J. W. C. White, J. T. Ellis, T. Conway, and R. J. Francey, 2000: Global carbon sinks and their variability inferred from atmospheric O2 and δ13C. Science, 287, 2467−2470, https://doi.org/10.1126/SCIENCE.287.5462.2467.
Battle, M. O., and Coauthors, 2019: Atmospheric measurements of the terrestrial O2: CO2 exchange ratio of a midlatitude forest. Atmospheric Chemistry and Physics, 19, 8687−8701, https://doi.org/10.5194/acp-19-8687-2019.
Bender, M. L., and M. O. Battle, 1999: Carbon cycle studies based on the distribution of O2 in air. Tellus, 51, 165−169, https://doi.org/10.3402/TELLUSB.V51I2.16268.
Bopp, L., C. Le Quéré, M. Heimann, A. C. Manning, and P. Monfray, 2002: Climate-induced oceanic oxygen fluxes: Implications for the contemporary carbon budget. Global Biogeochemical Cycles, 16, 6-1−6-13, https://doi.org/10.1029/2001GB001445.
Bopp, L., and Coauthors, 2013: Multiple stressors of ocean ecosystems in the 21st century: Projections with CMIP5 models. Biogeosciences, 10, 6225−6245, https://doi.org/10.5194/bg-10-6225-2013.
Bushinsky, S. M., A. R. Gray, K. S. Johnson, and J. L. Sarmiento, 2017: Oxygen in the southern ocean from argo floats: Determination of processes driving air-sea fluxes. J. Geophys. Res.: Oceans, 122, 8661−8682, https://doi.org/10.1002/2017JC012923.
Chen, G., and Coauthors, 2020: Global projections of future urban land expansion under shared socioeconomic pathways. Nature Communications, 11, 537, https://doi.org/10.1038/s41467-020-14386-x.
Cheng, L. J., and J. Zhu, 2018: 2017 was the warmest year on record for the global ocean. Adv. Atmos. Sci., 35, 261−263, https://doi.org/10.1007/s00376-018-8011-z.
Cheng, L. J., G. J. Wang, J. P. Abraham, and G. Huang, 2018: Decadal ocean heat redistribution since the late 1990s and its association with key climate modes. Climate, 6, 91, https://doi.org/10.3390/cli6040091.
Cheng, L. J., K. E. Trenberth, J. Fasullo, T. Boyer, J. Abraham, and J. Zhu, 2017: Improved estimates of ocean heat content from 1960 to 2015. Science Advances, 3, e1601545, https://doi.org/10.1126/SCIADV.1601545.
Dai, M., and Coauthors, 2013: Why are some marginal seas sources of atmospheric CO2? Geophys. Res. Lett., 40, 2154−2158, https://doi.org/10.1002/grl.50390.
DeVries, T., and Coauthors, 2019: Decadal trends in the ocean carbon sink. Proceedings of the National Academy of Sciences of the United States of America, 116, 11 646−11 651, https://doi.org/10.1073/PNAS.1900371116.
Dhanda, K. K., and L. P. Hartman, 2011: The ethics of carbon neutrality: A critical examination of voluntary carbon offset providers. Journal of Business Ethics, 100, 119−149, https://doi.org/10.1007/s10551-011-0766-4.
Friedlingstein, P., and Coauthors, 2019: Global carbon budget 2019. Earth System Science Data, 11, 1783−1838, https://doi.org/10.5194/essd-11-1783-2019.
Frölicher, T. L., E. M. Fischer, and N. Gruber, 2018: Marine heatwaves under global warming. Nature, 560, 360−364, https://doi.org/10.1038/s41586-018-0383-9.
Gao, Z. M., H. P. Liu, E. Arntzen, D. P. Mcfarland, X. Y. Chen, and M. Y. Huang, 2020: Uncertainties in turbulent statistics and fluxes of CO2 associated with density effect corrections. Geophys. Res. Lett., 47, e2020GL088859, https://doi.org/10.1029/2020GL088859.
Gao, Z. M., H. P. Liu, J. E. C. Missik, J. Y. Yao, M. Y. Huang, X. Y. Chen, E. Arntzen, and D. P. McFarland, 2019: Mechanistic links between underestimated CO2 fluxes and non-closure of the surface energy balance in a semi-arid sagebrush ecosystem. Environmental Research Letters, 14, 044016, https://doi.org/10.1088/1748-9326/ab082d.
Garcia, H. E., and L. I. Gordon, 1992: Oxygen solubility in seawater: Better fitting equations. Limnology and Oceanography, 37, 1307−1312, https://doi.org/10.4319/lo.1992.37.6.1307.
Gruber, N., M. Gloor, S. M. Fan, and J. L. Sarmiento, 2001: Air-sea flux of oxygen estimated from bulk data: Implications for the marine and atmospheric oxygen cycles. Global Biogeochemical Cycles, 15, 783−803, https://doi.org/10.1029/2000GB001302.
Han, D. L., J. P. Huang, L. Ding, X. Y. Liu, C. Y. Li, and F. Yang, 2021: Oxygen footprint: An indicator of the anthropogenic ecosystem changes. Catena, 206, 105501, https://doi.org/10.1016/j.catena.2021.105501.
Huang, J. P., H. P. Yu, X. D. Guan, G. Y. Wang, and R. X. Guo, 2016: Accelerated dryland expansion under climate change. Nature Climate Change, 6, 166−171, https://doi.org/10.1038/NCLIMATE2837.
Huang, J. P., Y. K. Xie, X. D. Guan, D. D. Li, and F. Ji, 2017a: The dynamics of the warming hiatus over the Northern Hemisphere. Climate Dyn., 48, 429−446, https://doi.org/10.1007/s00382-016-3085-8.
Huang, J. P., H. P. Yu, A. G. Dai, Y. Wei, and L. T. Kang, 2017b: Drylands face potential threat under 2°C global warming target. Nature Climate Change, 7, 417−422, https://doi.org/10.1038/NCLIMATE3275.
Huang, J. P., J. P. Huang, X. Y. Liu, C. Y. Li, L. Ding, and H. P. Yu, 2018: The global oxygen budget and its future projection. Science Bulletin, 63, 1180−1186, https://doi.org/10.1016/j.scib.2018.07.023.
Huang, J. P., and Coauthors, 2021: The oxygen cycle and a habitable Earth. Science China Earth Sciences, 64, 511−528, https://doi.org/10.1007/s11430-020-9747-1.
Jacobson, A. R., and Coauthors, 2020: CarbonTracker CT2019. Available from https://doi.org/10.25925/39m3-6069.
Ji, F., Z. H. Wu, J. P. Huang, and E. P. Chassignet, 2014: Evolution of land surface air temperature trend. Nature Climate Change, 4, 462−466, https://doi.org/10.1038/nclimate2223.
Keeling, R. F., and S. R. Shertz, 1992: Seasonal and interannual variations in atmospheric oxygen and implications for the global carbon cycle. Nature, 358, 723−727, https://doi.org/10.1038/358723a0.
Keeling, R. F., and A. C. Manning, 2014: Studies of recent changes in atmospheric O2 content. Treatise on Geochemistry. vol 5. 2nd ed., H. D. Holland and K. K. Turekian, Eds., Elsevier, 385−404, https://doi.org/10.1016/B978-0-08-095975-7.00420-4.
Keenan, T. F., I. C. Prentice, J. G. Canadell, C. A. Williams, H. Wang, M. Raupach, and G. J. Collatz, 2016: Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. Nature Communications, 7, 13428, https://doi.org/10.1038/ncomms13428.
Landschützer, P., N. Gruber, and D. C. E. Bakker, 2016: Decadal variations and trends of the global ocean carbon sink. Global Biogeochemical Cycles, 30, 1396−1417, https://doi.org/10.1002/2015GB005359.
Laszuk, D., 2017. Python implementation of Empirical Mode Decomposition algorithm.GitHub. https://github.com/laszukdawid/PyEMD. GitHub Repository
Li, C. Y., J. P. Huang, Y. L. He, D. D. Li, and L. Ding, 2019: Atmospheric warming slowdown during 1998−2013 associated with increasing ocean heat content. Adv. Atmos. Sci., 36, 1188−1202, https://doi.org/10.1007/s00376-019-8281-0.
Li, C. Y., J. P. Huang, L. Ding, X. Y. Liu, H. P. Yu, and J. P. Huang, 2020: Increasing escape of oxygen from oceans under climate change. Geophys. Res. Lett., 47, e2019GL086345, https://doi.org/10.1029/2019GL086345.
Li, C. Y., J. P. Huang, L. Ding, X. Y. Liu, D. L. Han, and J. P. Huang, 2021: Estimation of oceanic and land carbon sinks based on the most recent oxygen budget. Earth’s Future, 9, e2021EF002124, https://doi.org/10.1029/2021ef002124.
Liang, J. H., C. Deutsch, J. C. McWilliams, B. Baschek, P. P. Sullivan, and D. Chiba, 2013: Parameterizing bubble-mediated air-sea gas exchange and its effect on ocean ventilation. Global Biogeochemical Cycles, 27, 894−905, https://doi.org/10.1002/gbc.20080.
Liu, X. Y., J. P. Huang, J. P. Huang, C. Y. Li, L. Ding, and W. J. Meng, 2020: Estimation of gridded atmospheric oxygen consumption from 1975 to 2018. Journal of Meteorological Research, 34, 646−658, https://doi.org/10.1007/S13351-020-9133-7.
Manning, A., and R. F. Keeling, 2006: Global oceanic and land biotic carbon sinks from the scripps atmospheric oxygen flask sampling network. Tellus, 58, 95−116, https://doi.org/10.1111/J.1600-0889.2006.00175.X.
Niu, D. X., G. Q. Wu, Z. S. Ji, D. Y. Wang, Y. Y. Li, and T. Gao, 2021: Evaluation of provincial carbon neutrality capacity of china based on combined weight and improved topsis model. Sustainability, 13, 2777, https://doi.org/10.3390/su13052777.
Palter, J. B., and D. S. Trossman, 2018: The sensitivity of future ocean oxygen to changes in ocean circulation. Global Biogeochemical Cycles, 32, 738−751, https://doi.org/10.1002/2017GB005777.
Piao, S., and Coauthors, 2018: Lower land-use emissions responsible for increased net land carbon sink during the slow warming period. Nature Geoscience, 11, 739−743, https://doi.org/10.1038/s41561-018-0204-7.
Piao, S. L., and Coauthors, 2020a: Characteristics, drivers and feedbacks of global greening. Nature Reviews Earth & Environment, 1, 14−27, https://doi.org/10.1038/s43017-019-0001-x.
Piao, S. L., and Coauthors, 2020b: Interannual variation of terrestrial carbon cycle: Issues and perspectives. Global Change Biology, 26, 300−318, https://doi.org/10.1111/gcb.14884.
Plattner, G. K., F. Joos, and T. F. Stocker, 2002: Revision of the global carbon budget due to changing air-sea oxygen fluxes. Global Biogeochemical Cycles, 16, 1096, https://doi.org/10.1029/2001GB001746.
Randerson, J. T., C. A. Masiello, C. J. Still, T. Rahn, H. Poorter, and C. B. Field, 2006: Is carbon within the global terrestrial biosphere becoming more oxidized. Implications for trends in atmospheric O 2. Global Change Biology, 12, 260−271, https://doi.org/10.1111/j.1365-2486.2006.01099.x.
Resplandy, L., R. Séférian, and L. Bopp, 2015: Natural variability of CO2 and O2 fluxes: What can we learn from centuries-long climate models simulations? J. Geophys. Res.: Oceans, 120, 384−404, https://doi.org/10.1002/2014jc010463.
Seneviratne, S. I., M. G. Donat, A. J. Pitman, R. Knutti, and R. L. Wilby, 2016: Allowable CO2 emissions based on regional and impact-related climate targets. Nature, 529, 477−483, https://doi.org/10.1038/nature16542.
Tohjima, Y., H. Mukai, T. MacHida, Y. Hoshina, and S. I. Nakaoka, 2019: Global carbon budgets estimated from atmospheric O2N2 and CO2 observations in the western Pacific region over a 15-year period. Atmospheric Chemistry and Physics, 19, 9269−9285, https://doi.org/10.5194/acp-19-9269-2019.
Trenberth, K. E., J. T. Fasullo, and M. A. Balmaseda, 2014: Earth’s energy imbalance. J. Climate, 27, 3129−3144, https://doi.org/10.1175/JCLI-D-13-00294.1.
Wanninkhof, R., 1992: Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res.: Oceans, 97, 7373−7382, https://doi.org/10.1029/92JC00188.
Wei, Y., J. G. Wu, J. P. Huang, X. Y. Liu, D. L. Han, L. L. An, H. P. Yu, and J. P. Huang, 2021: Declining oxygen level as an emerging concern to global cities. Environ. Sci. Technol., 55, 7808−7817, https://doi.org/10.1021/acs.est.1c00553.
Wen, Q., J. Yao, K. Döös, and H. J. Yang, 2018: Decoding hosing and heating effects on global temperature and meridional circulations in a warming climate. J. Climate, 31, 9605−9623, https://doi.org/10.1175/JCLI-D-18-0297.1.
Willis, J. K., D. Roemmich, and B. Cornuelle, 2004: Interannual variability in upper ocean heat content, temperature, and thermosteric expansion on global scales. J. Geophys. Res.: Oceans, 109, C12036, https://doi.org/10.1029/2003JC002260.
Yang, B., S. R. Emerson, and S. M. Bushinsky, 2017: Annual net community production in the subtropical Pacific Ocean from in situ oxygen measurements on profiling floats. Global Biogeochemical Cycles, 31, 728−744, https://doi.org/10.1002/2016GB005545.
Yang, H. J., and Q. Wen, 2020: Investigating the role of the Tibetan Plateau in the formation of atlantic meridional overturning circulation. J. Climate, 33, 3585−3601, https://doi.org/10.1175/JCLI-D-19-0205.1.
Yang, H. J., K. Wang, H. J. Dai, Y. X. Wang, and Q. Li, 2016: Wind effect on the Atlantic meridional overturning circulation via sea ice and vertical diffusion. Climate Dyn., 46, 3387−3403, https://doi.org/10.1007/s00382-015-2774-z.
Yue, C., P. Ciais, R. A. Houghton, and A. A. Nassikas, 2020: Contribution of land use to the interannual variability of the land carbon cycle. Nature Communications, 11, 3170, https://doi.org/10.1038/s41467-020-16953-8.