Armijo, L., 1969: A theory for the determination of wind and precipitation velocities with doppler radars. J. Atmos. Sci., 26, 570−573, https://doi.org/10.1175/1520-0469(1969)026<0570:ATFTDO>2.0.CO;2.
Boucher, R. J., R. Wexler, D. Atlas, and R. M. Lhermitte, 1965: Mesoscale wind structure revealed by doppler radar. J. Appl. Meteor., 4, 590−597, https://doi.org/10.1175/1520-0450(1965)004<0590:MWSRBD>2.0.CO;2.
Bousquet, O., and M. Chong, 1998: A multiple-doppler synthesis and continuity adjustment technique (MUSCAT) to recover wind components from doppler radar measurements. J. Atmos. Oceanic Technol., 15, 343−359, https://doi.org/10.1175/1520-0426(1998)015<0343:AMDSAC>2.0.CO;2.
Caton, P. G., 1963: The measurement of wind and convergence by doppler radar. Proc. 10th Weather Radar Conf., Washington DC, Amer. Meteor. Soc., 290−296.
Chong, M., and C. Campos, 1996: Extended overdetermined dual-doppler formalism in synthesizing airborne doppler radar data. J. Atmos. Oceanic Technol., 13, 581−597, https://doi.org/10.1175/1520-0426(1996)013<0581:EODDFI>2.0.CO;2.
Chong, M., and S. Cosma, 2000: A formulation of the continuity equation of MUSCAT for either flat or complex terrain. J. Atmos. Oceanic Technol., 17, 1556−1565, https://doi.org/10.1175/1520-0426(2000)017<1556:AFOTCE>2.0.CO;2.
Chong, M., and O. Bousquet, 2001: On the application of MUSCAT to a ground-baseddual-Doppler radar system. Meteor. Atmos. Phys., 78, 133−139, https://doi.org/10.1007/s007030170011.
Cressman, G. P., 1959: An operational objective analysis system. Mon. Wea. Rev., 87, 367−374, https://doi.org/10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2.
Foote, G. B., and P. S. Du Toit, 1969: Terminal velocity of raindrops aloft. J. Appl. Meteor., 8, 249−253, https://doi.org/10.1175/1520-0450(1969)008<0249:TVORA>2.0.CO;2.
Fujita, T. T., 1978: Manual of downburst identification for Project NIMROD. SMRP Res. Paper, 156, 104 pp.
Fujita, T. T., 1979: Objectives, operation, and results of Project NIMROD. Preprints, 11th Conf. on Severe Local Storms, Kansas City, Amer. Meteor. Soc., 259−266.
Gao, J. D., M. Xue, A. Shapiro, and K. K. Droegemeier, 1999: A variational method for the analysis of three-dimensional wind fields from two Doppler radars. Mon. Wea. Rev., 127, 2128−2142, https://doi.org/10.1175/1520-0493(1999)127<2128:AVMFTA>2.0.CO;2.
Gao, J. D., M. Xue, A. Shapiro, Q. Xu, and K. K. Droegemeier, 2001: Three-dimensional simple adjoint velocity retrievals from single-Doppler radar. J. Atmos. Oceanic Technol., 18, 26−38, https://doi.org/10.1175/1520-0426(2001)018<0026:TDSAVR>2.0.CO;2.
Klemp, J. B., and R. Rotunno, 1983: A study of the tornadic region within a supercell thunderstorm. J. Aeronaut. Sci., 40, 359−377, https://doi.org/10.1175/1520-0469(1983)040<0359:ASOTTR>2.0.CO;2.
Koscielny, A. J., R. J. Doviak, and R. Rabin, 1982: Statistical considerations in the estimation of divergence from single-Doppler radar and application to prestorm boundary-layer observations. J. Appl. Meteor., 21, 197−210, https://doi.org/10.1175/1520-0450(1982)021<0197:SCITEO>2.0.CO;2.
Laroche, S., and I. Zawadzki, 1994: A variational analysis method for retrieval of three-dimensional wind field from single-Doppler radar data. J. Atmos. Sci., 51, 2664−2682, https://doi.org/10.1175/1520-0469(1994)051<2664:AVAMFR>2.0.CO;2.
Lateef, M. A., 1967: Vertical motion, divergence, and vorticity in the troposphere over the caribbean, August 3-5:1963. Mon. Wea. Rev., 95, 778−790, https://doi.org/10.1175/1520-0493(1967)095<0778:VMDAVI>2.3.CO;2.
Lhermitte, R. M., and D. Atlas, 1961: Precipitation motion by pulse Doppler radar. Preprints, 9th Conf. on Radar Meteorology, Kansas City, KS, Amer. Meteor. Soc., 218−223.
Liebmann, H., 1918: Die angenäherte Ermittelung harmonischer Funktionen und konformer Abbildungen. Sitzungsberichte der math. -phys. Klasse, Bayer. Akademie der Wissenschaften, München, 385−416. (in German)
Liou, Y.-C., and Y.-J. Chang, 2009: A variational multiple-Doppler radar three-dimensional wind synthesis method and its impacts on thermodynamic retrieval. Mon. Wea. Rev., 137, 3992−4010, https://doi.org/10.1175/2009MWR2980.1.
Liou, Y.-C., S.-F. Chang, and J. Z. Sun, 2012: An application of the immersed boundary method for recovering the three-dimensional wind fields over complex terrain using multiple-Doppler radar data. Mon. Wea. Rev., 140, 1603−1619, https://doi.org/10.1175/MWR-D-11-00151.1.
Liou, Y.-C., P.-C. Yang, and W.-Y. Wang, 2019: Thermodynamic recovery of the pressure and temperature fields over complex terrain using wind fields derived by multiple-Doppler radar synthesis. Mon. Wea. Rev., 147, 3843−3857, https://doi.org/10.1175/MWR-D-19-0059.1.
Liu, S., C. J. Qiu, Q. Xu, P. F. Zhang, J. D. Gao, and A. M. Shao, 2005: An improved method for Doppler wind and thermodynamic retrievals. Adv. Atmos. Sci., 22, 90−102, https://doi.org/10.1007/BF02930872.
Meng, Z. Y., F. Q. Zhang, P. Markowski, D. C. Wu, and K. Zhao, 2012: A modeling study on the development of a bowing structure and associated rear inflow within a squall line over South China. J. Atmos. Sci., 69, 1182−1207, https://doi.org/10.1175/JAS-D-11-0121.1.
Miller, L. J., and R. G. Strauch, 1974: A dual Doppler radar method for the determination of wind velocities within precipitating weather systems. Remote Sens. Environ., 3, 219−235, https://doi.org/10.1016/0034-4257(74)90044-3.
O'Brien, J. J., 1970: Alternative solutions to the classical vertical velocity problem. J. Appl. Meteor., 9, 197−203, https://doi.org/10.1175/1520-0450(1970)009<0197:ASTTCV>2.0.CO;2.
Ogura, Y., and N. A. Phillips, 1962: Scale analysis of deep and shallow convection in the atmosphere. J. Atmos. Sci., 19, 173−179, https://doi.org/10.1175/1520-0469(1962)019<0173:SAODAS>2.0.CO;2.
Qiu, C.-J., and Q. Xu, 1992: A simple adjoint method of wind analysis for single-Doppler data. J. Atmos. Oceanic Technol., 9, 588−598, https://doi.org/10.1175/1520-0426(1992)009<0588:ASAMOW>2.0.CO;2.
Qiu, C.-J., and Q. Xu, 1996: Least squares retrieval of microburst winds from single-Doppler radar data. Mon. Wea. Rev., 124, 1132−1144, https://doi.org/10.1175/1520-0493(1996)124<1132:LSROMW>2.0.CO;2.
Ray, P. S., and K. L. Sangren, 1983: Multiple-Doppler radar network design. J. Climate Appl. Meteor., 22, 1444−1454, https://doi.org/10.1175/1520-0450(1983)022<1444:MDRND>2.0.CO;2.
Ray, P. S., R. J. Doviak, G. B. Walker, D. Sirmans, J. Carter, and B. Bumgarner, 1975: Dual-Doppler observation of a tornadic storm. J. Appl. Meteor., 14, 1521−1530, https://doi.org/10.1175/1520-0450(1975)014<1521:DDOOAT>2.0.CO;2.
Ray, P. S., K. K. Wagner, K. W. Johnson, J. J. Stephens, W. C. Bumgarner, and E. A. Mueller, 1978: Triple-Doppler observations of a convective storm. J. Appl. Meteor., 17, 1201−1212, https://doi.org/10.1175/1520-0450(1978)017<1201:TDOOAC>2.0.CO;2.
Ray, P. S., J. J. Stephens, and K. W. Johnson, 1979: Multiple-Doppler radar network design. J. Appl. Meteor., 18, 706−710, https://doi.org/10.1175/1520-0450(1979)018<0706:MDRND>2.0.CO;2.
Ray, P. S., C. L. Ziegler, W. Bumgarner, and R. J. Serafin, 1980: Single- and multiple-Doppler radar observations of tornadic storms. Mon. Wea. Rev., 108, 1607−1625, https://doi.org/10.1175/1520-0493(1980)108<1607:SAMDRO>2.0.CO;2.
Ray, P. S., and Coauthors, 1981: The morphology of several tornadic storms on 20 May 1977. J. Atmos. Sci., 38, 1643−1663, https://doi.org/10.1175/1520-0469(1981)038<1643:TMOSTS>2.0.CO;2.
Richardson, L. F., 1911: IX. The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam. Philosophical Transactions of the Royal Society A: Mathematical. Physical and Engineering Sciences, 210, 459−470, https://doi.org/10.1098/rsta.1911.0009.
Schenkman, A. D., M. Xue, A. Shapiro, K. Brewster, and J. D. Gao, 2011: Impact of CASA radar and oklahoma mesonet data assimilation on the analysis and prediction of tornadic mesovortices in an MCS. Mon. Wea. Rev., 139, 3422−3445, https://doi.org/10.1175/MWR-D-10-05051.1.
Shapiro, A., C. K. Potvin, and J. D. Gao, 2009: Use of a vertical vorticity equation in variational dual-Doppler wind analysis. J. Atmos. Oceanic Technol., 26, 2089−2106, https://doi.org/10.1175/2009JTECHA1256.1.
Skamarock, W. C., and Coauthors, 2008: A description of the advanced research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp.
Waldteufel, P., and H. Corbin, 1979: On the analysis of single-Doppler radar data. J. Appl. Meteor., 18, 532−542, https://doi.org/10.1175/1520-0450(1979)018<0532:OTAOSD>2.0.CO;2.
Weisman, M. L., 1992: The role of convectively generated rear-inflow jets in the evolution of long-lived mesoconvective systems. J. Atmos. Sci., 49, 1826−1847, https://doi.org/10.1175/1520-0469(1992)049<1826:TROCGR>2.0.CO;2.
Weisman, M. L., 1993: The genesis of severe, long-lived bow echoes. J. Atmos. Sci., 50, 645−670, https://doi.org/10.1175/1520-0469(1993)050<0645:TGOSLL>2.0.CO;2.
Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504−520, https://doi.org/10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.
Wilhelmson, R. B., and J. B. Klemp, 1981: A three-dimensional numerical simulation of splitting severe storms on 3 April 1964. J. Atmos. Sci., 38, 1581−1600, https://doi.org/10.1175/1520-0469(1981)038<1581:ATDNSO>2.0.CO;2.
Xu, Q., and C.-J. Qiu, 1995: Adjoint-method retrievals of low-altitude wind fields from single-Doppler reflectivity and radial-wind data. J. Atmos. Oceanic Technol., 12, 1111−1119, https://doi.org/10.1175/1520-0426(1995)012<1111:AMROLA>2.0.CO;2.
Xu, Q., C.-J. Qiu, and J.-X. Yu, 1994: Adjoint-method retrievals of low-altitude wind fields from single-doppler wind data. J. Atmos. Oceanic Technol., 11, 579−585, https://doi.org/10.1175/1520-0426(1994)011<0579:AMROLA>2.0.CO;2.
Xu, Q., C.-J. Qiu, H.-D. Gu, and J.-X. Yu, 1995: Simple adjoint retrievals of microburst winds from single-Doppler radar data. Mon. Wea. Rev., 123, 1822−1833, https://doi.org/10.1175/1520-0493(1995)123<1822:SAROMW>2.0.CO;2.
Zhang, J., and S. X. Wang, 2006: An automated 2D multipass Doppler radar velocity dealiasing scheme. J. Atmos. Oceanic Technol., 23, 1239−1248, https://doi.org/10.1175/JTECH1910.1.