Ansmann, A., and Coauthors, 2019a: Ice-nucleating particle versus ice crystal number concentrationin altocumulus and cirrus layers embedded in Saharan dust: A closure study. Atmospheric Chemistry and Physics, 19, 1 5087−1 5115, https://doi.org/10.5194/acp-19-15087-2019.
Ansmann, A., R.-E. Mamouri, J. Hofer, H. Baars, D. Althausen, and S. F. Abdullaev, 2019b: Dust mass, cloud condensation nuclei, and ice-nucleating particle profiling with polarization lidar: Updated POLIPHON conversion factors from global AERONET analysis. Atmospheric Measurement Techniques, 12, 4849−4865, https://doi.org/10.5194/amt-12-4849-2019.
Barahona, D., and A. Nenes, 2009: Parameterizing the competition between homogeneous and heterogeneous freezing in cirrus cloud formation – monodisperse ice nuclei. Atmospheric Chemistry and Physics, 9, 369−381, https://doi.org/10.5194/acp-9-369-2009.
Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108(7), 1046−1053, https://doi.org/10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2.
Bühl, J., P. Seifert, A. Myagkov, and A. Ansmann, 2016: Measuring ice- and liquid-water properties in mixed-phase cloud layers at the Leipzig Cloudnet station. Atmospheric Chemistry and Physics, 16, 1 0609−1 0620, https://doi.org/10.5194/acp-16-10609-2016.
Bühl, J., P. Seifert, R. Engelmann, and A. Ansmann, 2019: Impact of vertical air motions on ice formation rate in mixed-phase cloud layers. npj Climate and Atmospheric Science, 2, 36, https://doi.org/10.1038/s41612-019-0092-6.
Campbell, J., and H. K. Christenson, 2018: Nucleation- and emergence-limited growth of ice from pores. Physical Review Letters, 120, 165701, https://doi.org/10.1103/PhysRevLett.120.165701.
Campbell, J. R., S. Lolli, J. R. Lewis, Y. Gu, and E. J. Welton, 2016: Daytime cirrus cloud top-of-the-atmosphere radiative forcing properties at a midlatitude site and their global consequences. J. Appl. Meteorol. Climatol., 55, 1667−1679, https://doi.org/10.1175/JAMC-D-15-0217.1.
Cziczo, D. J., and Coauthors, 2013: Clarifying the dominant sources and mechanisms of cirrus cloud formation. Science, 340, 1320−1324, https://doi.org/10.1126/science.1234145.
David, R. O., and Coauthors, 2019: Pore condensation and freezing is responsible for ice formation below water saturation for porous particles. Proceedings of the National Academy of Sciences of the United States of America, 116, 8184−8189, https://doi.org/10.1073/pnas.1813647116.
DeMott, P. J., M. P. Meyers, and W. R. Cotton, 1994: Parameterization and impact of ice initiation processes relevant to numerical model simulations of cirrus clouds. J. Atmos. Sci., 51, 77−90, https://doi.org/10.1175/1520-0469(1994)051<0077:PAIOII>2.0.CO;2.
DeMott, P. J., D. J. Cziczo, A. J. Prenni, D. M. Murphy, S. M. Kreidenweis, D. S. Thomson, R. Borys, and D. C. Rogers, 2003: Measurements of the concentration and composition of nuclei for cirrus formation. Proceedings of the National Academy of Sciences of the United States of America, 100(25), 1 4655−1 4660, https://doi.org/10.1073/pnas.2532677100.
Dierens, K., 2003: On the transition between heterogeneous and homogeneous freezing. Atmospheric Chemistry and Physics, 3, 437−446, https://doi.org/10.5194/acp-3-437-2003.
Fernald, F. G., 1984: Analysis of atmospheric lidar observations: Some comments. Appl. Opt., 23, 652−653, https://doi.org/10.1364/AO.23.000652.
Freudenthaler, V., and Coauthors, 2009: Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006. Tellus B, 61, 165−179, https://doi.org/10.1111/j.1600-0889.2008.00396.x.
Froyd, K. D., and Coauthors, 2013: Cirrus cloud formation and the role of heterogeneous ice nuclei. AIP Conference Proceedings, 1527, 976−978, https://doi.org/10.1063/1.4803436.
Froyd, K. D., D. M. Murphy, P. Lawson, D. Baumgardner, and R. L. Herman, 2010: Aerosols that form subvisible cirrus at the tropical tropopause. Atmospheric Chemistry and Physics, 10, 209−218, https://doi.org/10.5194/acp-10-209-2010.
Gamage, S. M., R. J. Sica, G. Martucci, and A. Haefele, 2020: A 1D var retrieval of relative humidity using the ERA5 dataset for the assimilation of Raman lidar measurements. J. Atmos. Oceanic Technol., 37(11), 2051−2064, https://doi.org/10.1175/JTECH-D-19-0170.1.
Haag, W., B. Kärcher, J. Ström, A. Minikin, U. Lohmann, J. Ovarlez, and A. Stohl, 2003: Freezing thresholds and cirrus cloud formation mechanisms inferred from in situ measurements of relative humidity. Atmospheric Chemistry and Physics, 3, 1791−1806, https://doi.org/10.5194/acp-3-1791-2003.
He, Y., and F. Yi, 2015: Dust aerosols detected using a ground-based polarization lidar and CALIPSO over Wuhan (30.5°N, 114.4°E), China. Advances in Meteorology, 2015, 536762, https://doi.org/10.1155/2015/536762.
He, Y., F. Yi, Y. Yi, F. C. Liu, and Y. P. Zhang, 2021a: Heterogeneous nucleation of midlevel cloud layer influenced by transported Asian dust over Wuhan (30.5°N, 114.4°E), China. J. Geophys. Res. Atmos., 126(2), e2020JD033394, https://doi.org/10.1029/2020JD033394.
He, Y., Y. F. Zhang, F. C. Liu, Z. P. Yin, Y. Yi, Y. F. Zhan, and F. Yi, 2021b: Retrievals of dust-related particle mass and ice-nucleating particle concentration profiles with ground-based polarization lidar and sun photometer over a megacity in central China. Atmospheric Measurement Techniques, 14, 5939−5954, https://doi.org/10.5194/amt-14-5939-2021.
He, Y., F. C. Liu, Z. P. Yin, Y. P. Zhang, Y. F. Zhan, and F. Yi, 2021c: Horizontally Oriented ice crystals observed by the synergy of zenith- and slant-pointed polarization lidar over Wuhan (30.5°N, 114.4°E), China. Journal of Quantitative Spectroscopy and Radiative Transfer, 268, 107626, https://doi.org/10.1016/j.jqsrt.2021.107626.
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999−2049, https://doi.org/10.1002/qj.3803.
Heymsfield, A. J., and Coauthors, 2017: Cirrus clouds. Meteor. Monogr., 58, 2.1−2.26, https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0010.1.
Hoffmann, N., A. Kiselev, D. Rzesanke, D. Duft, and T. Leisner, 2013: Experimental quantification of contact freezing in an electrodynamic balance. Atmospheric Measurement Techniques, 6, 2373−2382, https://doi.org/10.5194/amt-6-2373-2013.
Hoose, C., and O. Möhler, 2012: Heterogeneous ice nucleation on atmospheric aerosols: A review of results from laboratory experiments. Atmospheric Chemistry and Physics, 12, 9817−9854, https://doi.org/10.5194/acp-12-9817-2012.
Hu, Q. Y., H. F. Wang, P. Goloub, Z. Q. Li, I. Veselovskii, T. Podvin, K. T. Li, and M. Korenskiy, 2020: The characterization of Taklamakan dust properties using a multiwavelength Raman polarization lidar in Kashi, China. Atmospheric Chemistry and Physics, 20, 1 3817−1 3834, https://doi.org/10.5194/acp-20-13817-2020.
Huang, J. P., P. Minnis, B. Lin, T. H. Wang, Y. H. Yi, Y. X. Hu, S. Sun-Mack, and K. Ayers, 2006: Possible influences of Asian dust aerosols on cloud properties and radiative forcing observed from MODIS and CERES. Geophys. Res. Lett., 33, L06824, https://doi.org/10.1029/2005GL024724.
Immler, F., R. Treffeisen, D. Engelbart, K. Krüger, and O. Schrems, 2008: Cirrus, contrails, and ice supersaturated regions in high pressure systems at northern mid latitudes. Atmospheric Chemistry and Physics, 8, 1689−1699, https://doi.org/10.5194/acp-8-1689-2008.
IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
Kafle, D. N., and R. L. Coulter, 2013: Micropulse lidar-derived aerosol optical depth climatology at ARM sites worldwide. J. Geophys. Res. Atmos., 118, 7293−7308, https://doi.org/10.1002/jgrd.50536.
Kanji, Z. A., L. A. Ladino, H. K. Wex, Y. Boose, M. Burkert‐Kohn, D. J. Cziczo, and M. Krämer, 2017: Overview of ice nucleating particles. Meteor. Monogr., 58, 1.1−1.33, https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0006.1.
Kärcher, B., and U. Lohmann, 2003: A parameterization of cirrus cloud formation: Heterogeneous freezing. J. Geophys. Res., 108(D14), 4402, https://doi.org/10.1029/2002JD003220.
Kärcher, B., A. Dörnbrack, and I. Sölch, 2014: Supersaturation variability and cirrus ice crystal size distributions. J. Atmos. Sci., 71, 2905−2926, https://doi.org/10.1175/JAS-D-13-0404.1.
Kojima, T., P. R. Buseck, Y. Iwasaka, A. Matsuki, and D. Trochkine, 2006: Sulfate-coated dust particles in the free troposphere over Japan. Atmospheric Research, 82(3-4), 698−708, https://doi.org/10.1016/j.atmosres.2006.02.024.
Kong, W., and F. Yi, 2015: Convective border layer evolution from lidar backscatter and its relationship with surface aerosol concentration at a location of a central China megacity. Geophysics should be Geophysical or uniformly use the abbreviation: J. Geophys. Res. Atmos., 120, 7928−7940, https://doi.org/10.1002/2015JD023248.
Koop, T., B. P. Luo, A. Tsias, and T. Peter, 2000: Water activity as the determinant for homogeneous ice nucleation in aqueous solutions. Nature, 406, 611−614, https://doi.org/10.1038/35020537.
Krämer, M., and Coauthors, 2009: Ice supersaturations and cirrus cloud crystal numbers. Atmospheric Chemistry and Physics, 9, 3505−3522, https://doi.org/10.5194/acp-9-3505-2009.
Krämer, M., and Coauthors, 2016: A microphysics guide to cirrus clouds – Part 1: Cirrus types. Atmospheric Chemistry and Physics, 16, 3463−3483, https://doi.org/10.5194/acp-16-3463-2016.
Krämer, M., and Coauthors, 2020: A microphysics guide to cirrus – Part 2: Climatologies of clouds and humidity from observations. Atmospheric Chemistry and Physics, 20, 1 2569−1 2608, https://doi.org/10.5194/acp-20-12569-2020.
Kuebbeler, M., U. Lohmann, J. Hendricks, and B. Kärcher, 2014: Dust ice nuclei effects on cirrus clouds. Atmospheric Chemistry and Physics, 14, 3027−3046, https://doi.org/10.5194/acp-14-3027-2014.
Leblanc, T., I. S. McDermid, and T. D. Walsh, 2012: Ground-based water vapor Raman lidar measurements up to the upper troposphere and lower stratosphere for long-term monitoring. Atmospheric Measurement Techniques, 5, 17−36, https://doi.org/10.5194/amt-5-17-2012.
Liu, D., Z. E. Wang, Z. Y. Liu, D. Winker, and C. Trepte, 2008: A height resolved global view of dust aerosols from the first year CALIPSO lidar measurements. J. Geophys. Res., 113, D16214, https://doi.org/10.1029/2007JD009776.
Liu, F. C., and F. Yi, 2013: Spectrally resolved Raman lidar measurements of gaseous and liquid water in the atmosphere. Appl. Opt., 52(28), 6884−6895, https://doi.org/10.1364/AO.52.006884.
Liu, X., X. Shi, K. Zhang, E. J. Jensen, A. Gettelman, D. Barahona, A. Nenes, and P. Lawson, 2012: Sensitivity studies of dust ice nuclei effect on cirrus clouds with the Community Atmosphere Model CAM5. Atmospheric Chemistry and Physics, 12, 1 2061−1 2079, https://doi.org/10.5194/acp-12-12061-2012.
Lohmann, U., P. Spichtinger, S. Jess, T. Peter, and H. Smit, 2008: Cirrus cloud formation and ice supersaturated regions in a global climate model. Environmental Research Letters, 3, 045022, https://doi.org/10.1088/1748-9326/3/2/025002.
Mamouri, R. E., and A. Ansmann, 2014: Fine and Coarse dust separation with polarization lidar. Atmospheric Measurement Techniques, 7, 3717−3735, https://doi.org/10.5194/amt-7-3717-2014.
Mamouri, R. E., and A. Ansmann, 2015: Estimated desert-dust ice nuclei profiles from polarization lidar: Methodology and case studies. Atmospheric Chemistry and Physics, 15, 3463−3477, https://doi.org/10.5194/acp-15-3463-2015.
Mann, H. B., and D. R. Whitney, 1947: On a test of whether one of two random variables is stochastically larger than the other. The Annals of Mathematical Statistics, 18(1), 50−60, https://doi.org/10.1214/aoms/1177730491.
Marcolli, C., 2014: Deposition nucleation viewed as homogeneous or immersion freezing in pores and cavities. Atmospheric Chemistry and Physics, 14, 2071−2104, https://doi.org/10.5194/acp-14-2071-2014.
Marcolli, C., 2017: Pre-activation of aerosol particles by ice preserved in pores. Atmospheric Chemistry and Physics, 17, 1595−1622, https://doi.org/10.5194/acp-17-1595-2017.
Marcolli, C., 2020: Technical note: Fundamental aspects of ice nucleation via pore condensation and freezing including Laplace pressure and growth into macroscopic ice. Atmospheric Chemistry and Physics, 20, 3209−3230, https://doi.org/10.5194/acp-20-3209-2020.
Marinou, E., and Coauthors, 2019: Retrieval of ice-nucleating particle concentrations from lidar observations and comparison with UAV in situ measurements. Atmospheric Chemistry and Physics, 19, 1 1315−1 1342, https://doi.org/10.5194/acp-19-11315-2019.
Murphy, D. M., and T. Koop, 2005: Review of the vapour pressures of ice and supercooled water for atmospheric applications. Quart. J. Roy. Meteor. Soc., 131, 1539−1565, https://doi.org/10.1256/qj.04.94.
Murray, B. J., D. O’Sullivan, J. D. Atkinson, and M. E. Webb, 2012: Ice nucleation by particles immersed in supercooled cloud droplets. Chemical Society Reviews, 41, 6519−6554, https://doi.org/10.1039/C2CS35200A.
Murray, F. W., 1967: On the computation of saturation vapor pressure. J. Appl. Meteorol. Climatol., 6, 203−204, https://doi.org/10.1175/1520-0450(1967)006<0203:OTCOSV>2.0.CO;2.
Pan, H. L., and Coauthors, 2019: Seasonal and vertical distributions of aerosol type extinction coefficients with an emphasis on the impact of dust aerosol on the microphysical properties of cirrus over the Taklimakan Desert in Northwest China. Atmos. Environ., 203, 216−227, https://doi.org/10.1016/j.atmosenv.2019.02.004.
Peng, L., F. Yi, F. C. Liu, Z. P. Yin, and Y. He, 2021: Optical properties of aerosol and cloud particles measured by a single-line-extracted pure rotational Raman lidar. Optics Express, 29(14), 2 1947−2 1964, https://doi.org/10.1364/OE.427864.
Sakai, T., T. Nagai, Y. Zaizen, and Y. Mano, 2010: Backscattering linear depolarization ratio measurements of mineral, sea-salt, and ammonium sulfate particles simulated in a laboratory chamber. Appl. Opt., 49, 4441−4449, https://doi.org/10.1364/AO.49.004441.
Sassen, K., Z. E. Wang, and D. Liu, 2008: Global distribution of cirrus clouds from CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements. J. Geophys. Res., 113, D00A12, https://doi.org/10.1029/2008JD009972.
Seifert, P., and Coauthors, 2010: Saharan dust and heterogeneous ice formation: Eleven years of cloud observations at a central European EARLINET site. J. Geophys. Res., 115, D20201, https://doi.org/10.1029/2009JD013222.
Spice, A., D. W. Johnson, P. R. A. Brown, A. G. Darlison, and C. P. R. Saunders, 1999: Primary ice nucleation in orographic cirrus clouds: A numerical simulation of the microphysics. Quart. J. Roy. Meteor. Soc., 125, 1637−1667, https://doi.org/10.1002/qj.49712555708.
Tesche, M., A. Ansmann, D. Müller, D. Althausen, R. Engelmann, V. Freudenthaler, and S. Groß, 2009: Vertically resolved separation of dust and smoke over Cape Verde using multiwavelength Raman and polarization lidars during Saharan Mineral Dust Experiment 2008. J. Geophys. Res., 114, D13202, https://doi.org/10.1029/2009JD011862.
Ullrich, R., and Coauthors, 2017: A new ice nucleation active site parameterization for desert dust and soot. J. Atmos. Sci., 74, 699−717, https://doi.org/10.1175/JAS-D-16-0074.1.
Wagner, F., and Coauthors, 2009: Properties of dust aerosol particles transported to Portugal from the Sahara Desert. Tellus B, 61, 297−306, https://doi.org/10.1111/j.1600-0889.2008.00393.x.
Wang, W., F. Yi, F. C. Liu, Y. P. Zhang, C. M. Yu, and Z. P. Yin, 2020: Characteristics and seasonal variations of cirrus clouds from polarization lidar observations at a 30°N plain site. Remote Sensing, 12, 3998, https://doi.org/10.3390/rs12233998.
Wang, W. C., L. F. Sheng, H. C. Jin, and Y. Q. Han, 2015: Dust aerosol effects on cirrus and altocumulus clouds in Northwest China. Journal of Meteorological Research, 29(5), 793−805, https://doi.org/10.1007/s13351-015-4116-9.
Weger, M., and Coauthors, 2018: The impact of mineral dust on cloud formation during the Saharan dust event in April 2014 over Europe. Atmospheric Chemistry and Physics, 18, 1 7545−1 7572, https://doi.org/10.5194/acp-18-17545-2018.
Whiteman, D. N., S. H. Melfi, and R. A. Ferrare., 1992: Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere. Appl. Opt., 31(16), 3068−3082, https://doi.org/10.1364/AO.31.003068.
Wiegner, M., and Coauthors, 2009: Numerical simulations of optical properties of Saharan dust aerosols with emphasis on lidar applications. Tellus B, 61, 180−194, https://doi.org/10.1111/j.1600-0889.2008.00381.x.
Wu, C., and F. Yi, 2017: Local ice formation via liquid water growth in slowly ascending humid aerosol/liquid water layers observed with ground-based lidars and radiosondes. J. Geophys. Res. Atmos., 122, 4479−4493, https://doi.org/10.1002/2016JD025765.
Yin, Z. P., F. Yi, Y. He, F. C. Liu, C. M. Yu, Y. P. Zhang, and W. Wang, 2021: Asian dust impacts on heterogeneous ice formation at Wuhan based on polarization lidar measurements. Atmos. Environ., 246, 118166, https://doi.org/10.1016/j.atmosenv.2020.118166.