Agha Kouchak, A., L. Y. Cheng, O. Mazdiyasni, and A. Farahmand, 2014: Global warming and changes in risk of concurrent climate extremes: Insights from the 2014 California drought. Geophys. Res. Lett., 41, 8847−8852, https://doi.org/10.1002/2014GL062308.
Ashok, K., S. K. Behera, S. A. Rao, H. Y. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, https://doi.org/10.1029/2006JC003798.
Coumou, D., and S. Rahmstorf, 2012: A decade of weather extremes. Nature Climate Change, 2(7), 491−496, https://doi.org/10.1038/nclimate1452.
Dai, A. G., 2011: Drought under global warming: A review. Wiley Interdisciplinary Reviews: Climate Change, 2(1), 45−65, https://doi.org/10.1002/wcc.81.
Dai, A. G., 2013: Increasing drought under global warming in observations and models. Nature Climate Change, 3(1), 52−58, https://doi.org/10.1038/nclimate1633.
Diffenbaugh, N. S., D. L. Swain, and D. Touma, 2015: Anthropogenic warming has increased drought risk in California. Proceedings of the National Academy of Sciences of the United States of America, 112, 3931−3936, https://doi.org/10.1073/pnas.1422385112.
Doi, T., S. K. Behera, S. K., and T. Yamagata, 2020: Predictability of the super IOD event in 2019 and its link with El Niño Modoki. Geophys. Res. Lett., 47, e2019GL086713, https://doi.org/10.1029/2019GL086713.
Feng, J., and J. P. Li, 2011: Influence of El Niño Modoki on spring rainfall over south China. J. Geophys. Res., 116, D13102, https://doi.org/10.1029/2010JD015160.
Feng, J., J. P. Li, F. Zheng, F. Xie, and C. Sun, 2016: Contrasting impacts of developing phases of two types of El Niño on Southern China rainfall. J. Meteor. Soc. Japan, 94(4), 359−370, https://doi.org/10.2151/jmsj.2016-019.
Feng, J., J. P. Li, J. L. Zhu, H. Liao, and Y. Yang, 2017: Simulated contrasting influences of two La Niña Modoki events on aerosol concentrations over eastern China. J. Geophys. Res., 122, 2734−2749, https://doi.org/10.1002/2016JD026175.
Feng, L., T. Li, and W. D. Yu, 2014: Cause of severe droughts in Southwest China during 1951−2010. Climate Dyn., 43(7−8), 2033−2042, https://doi.org/10.1007/s00382-013-2026-z.
Gao, T., M. Luo, N. C. Lau, and T. O. Chan, 2020: Spatially distinct effects of two El Niño types on summer heat extremes in China. Geophys. Res. Lett., 47, e2020GL086982, https://doi.org/10.1029/2020GL086982.
Guan, Z. Y., and T. Yamagata, 2003: The unusual summer of 1994 in East Asia: IOD teleconnections. Geophys. Res. Lett., 30(10), 1544, https://doi.org/10.1029/2002GL016831.
Ham, Y. G., J. S. Kug, and I. S. Kang, 2007: Role of moist energy advection in formulating anomalous Walker Circulation associated with El Niño. J. Geophys. Res., 112, D24105, https://doi.org/10.1029/2007JD008744.
Hoell, A., J. Perlwitz, C. Dewes, K. Wolter, I. Rangwala, X. W. Quan, and J. Eischeid, 2019: Anthropogenic contributions to the intensity of the 2017 United States northern great plains drought. Bull. Amer. Meteor. Soc., 100(1), S19−S24, https://doi.org/10.1175/BAMS-D-18-0127.1.
Huang, B. Y., and Coauthors, 2017: NOAA Extended Reconstructed Sea Surface Temperature (ERSST), Version 5. [indicate subset used]. NOAA National Centers for Environmental Information, https://doi.org/10.7289/V5T72FNM.
Huang, J. P., H. P. Yu, X. D. Guan, G. Y. Wang, and R. X. Guo, 2016: Accelerated dryland expansion under climate change. Nature Climate Change, 6, 166−171, https://doi.org/10.1038/nclimate2837.
Huang, T., L. G. Xu, and H. X. Fan, 2019: Drought characteristics and its response to the global climate variability in the Yangtze River Basin, China. Water, 11(1), 13, https://doi.org/10.3390/w11010013.
Jin, D. C., Z. Y. Guan, and W. Y. Tang, 2013: The extreme drought event during winter-spring of 2011 in East China: Combined influences of teleconnection in midhigh latitudes and thermal forcing in maritime continent region. J. Climate, 26(20), 8210−8222, https://doi.org/10.1175/JCLI-D-12-00652.1.
Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 1333−1349, https://doi.org/10.1175/BAMS-D-13-00255.1.
Kobayashi, S., and Coauthors, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 5−48, https://doi.org/10.2151/jmsj.2015-001.
Lewis, S. L., P. M., Brando, O. L. Phillips, G. M. F. van der Heijden, and D. Nepstad, 2011: The 2010 amazon drought. Science, 331(6017), 554, https://doi.org/10.1126/science.1200807.
Li, C. X., and T. B. Zhao, 2019: Seasonal responses of precipitation in China to El Niño and positive Indian Ocean Dipole modes. Atmosphere, 10, 372, https://doi.org/10.3390/atmos10070372.
Li, H. X., H. P. Chen, H. J. Wang, J. Q. Sun, and J. H. Ma, 2018: Can Barents sea ice decline in spring enhance summer hot drought events over northeastern China? J. Climate, 31(12), 4705−4725, https://doi.org/10.1175/JCLI-D-17-0429.1.
Li, Y, B. S. Ma, J. Feng, and Y. Lu, 2019: Influence of the strongest central Pacific El Niño-Southern Oscillation events on the precipitation in eastern China. International Journal of Climatology, 39, 3076−3090, https://doi.org/10.1002/joc.6004.
Lott, F. C., N. Christidis, and P. A. Stott, 2013: Can the 2011 East African drought be attributed to human-induced climate change? Geophys Res. Lett., 40, 1177−1181, https://doi.org/10.1002/grl.50235.
Lu, E., and Coauthors, 2014: The atmospheric anomalies associated with the drought over the Yangtze River basin during spring 2011. J. Geophys. Res., 119, 5881−5894, https://doi.org/10.1002/2014JD021558.
Lu, E., Y. L. Luo, R. H. Zhang, Q. X. Wu, and L. P. Liu, 2011: Regional atmospheric anomalies responsible for the 2009-2010 severe drought in China. J. Geophys. Res., 116, D21114, https://doi.org/10.1029/2011JD015706.
Ma, S. M., T. J. Zhou, O. Angélil, and H. Shiogama, 2017: Increased chances of drought in southeastern periphery of the Tibetan Plateau induced by anthropogenic warming. J. Climate, 30(16), 6543−6560, https://doi.org/10.1175/JCLI-D-16-0636.1.
Ren, H. L., B. Lu, J. H. Wan, B. Tian, and P. Q. Zhang, 2018: Identification standard for ENSO events and its application to climate monitoring and prediction in China. Journal of Meteorological Research, 32(6), 923−936, https://doi.org/10.1007/s13351-018-8078-6.
Sternberg, T., 2011: Regional drought has a global impact. Nature, 472(7342), 169, https://doi.org/10.1038/472169d.
Sun, C. H., and S. Yang, 2012: Persistent severe drought in southern China during winter-spring 2011: Large-scale circulation patterns and possible impacting factors. J. Geophys. Res., 117, D10112, https://doi.org/10.1029/2012JD017500.
Sun, F. Y., A. Mejia, P. Zeng, and Y. Che, 2019: Projecting meteorological, hydrological and agricultural droughts for the Yangtze River basin. Science of the Total Environment, 696, 134076, https://doi.org/10.1016/j.scitotenv.2019.134076.
Swain, D. L., B. Langenbrunner, J. D. Neelin, and A. Hall, 2018: Increasing precipitation volatility in twenty-first-century California. Nature Climate Change, 8(5), 427−433, https://doi.org/10.1038/s41558-018-0140-y.
Trenberth, K. E., 2011: Changes in precipitation with climate change. Climate Research, 47, 123−138, https://doi.org/10.3354/cr00953.
Trenberth, K. E., A. G. Dai, G. van der Schrier, P. D. Jones, J. Barichivich, K. R. Briffa, and J. Sheffield, 2014: Global warming and changes in drought. Nature Climate Change, 4, 17−22, https://doi.org/10.1038/nclimate2067.
Trenberth, K. E., J. T. Fasullo, and T. G. Shepherd, 2015: Attribution of climate extreme events. Nature Climate Change, 5(8), 725−730, https://doi.org/10.1038/nclimate2657.
Wang, D., A. H. Wang, L. L. Xu, and X. H. Kong, 2020: The linkage between two types of El Niño events and summer streamflow over the Yellow and Yangtze River Basins. Adv. Atmos. Sci., 37, 160−172, https://doi.org/10.1007/s00376-019-9049-2.
Wang, L., and W. Chen, 2014: A CMIP5 multimodel projection of future temperature, precipitation, and climatological drought in China. International Journal of Climatology, 34(6), 2059−2078, https://doi.org/10.1002/joc.3822.
Wang, L., W. Chen, W. Zhou, and G. Huang, 2015: Teleconnected influence of tropical Northwest Pacific sea surface temperature on interannual variability of autumn precipitation in Southwest China. Climate Dyn., 45(9-10), 2527−2539, https://doi.org/10.1007/s00382-015-2490-8.
Williams, A. P., R. Seager, J. T. Abatzoglou, B. I. Cook, J. E. Smerdon, and E. R. Cook, 2015: Contribution of anthropogenic warming to California drought during 2012−2014. Geophys. Res. Lett., 42, 6819−6828, https://doi.org/10.1002/2015GL064924.
WMO, 2020: WMO Statement on the State of the Global Climate in 2019. [Available online from https://library.wmo.int/doc_num.php?explnum_id=10211]
Wu, B., T. J. Zhou, and T. Li, 2017: Atmospheric dynamic and thermodynamic processes driving the Western North Pacific anomalous anticyclone during El Niño. Part I: Maintenance mechanisms. J. Climate, 30, 9621−9635, https://doi.org/10.1175/JCLI-D-16-0489.1.
Wu, Z. W., J. P. Li, J. H. He, and Z. H. Jiang, 2006: Occurrence of droughts and floods during the normal summer monsoons in the mid- and lower reaches of the Yangtze River. Geophys. Res. Lett., 33, L05813, https://doi.org/10.1029/2005GL024487.
Yang, J., D. Y. Gong, W. S. Wang, M. Hu, and R. Mao, 2012: Extreme drought event of 2009/2010 over southwestern China. Meteorol. Acs., 115(3−4), 173−184, https://doi.org/10.1007/s00703-011-0172-6.
Yang, S. Y., B. Y. Wu, R. H. Zhang, and S. W. Zhou, 2013: Relationship between an abrupt drought-flood transition over mid-low reaches of the Yangtze River in 2011 and the intraseasonal oscillation over mid-high latitudes of East Asia. Acta Meteorologica Sinica, 27(2), 129−143, https://doi.org/10.1007/s13351-013-0201-0.
Yu, J. Y., X. Wang, S. Yang, H. Paek, and M. Y. Chen, 2017: The changing El Niño-Southern Oscillation and associated climate extremes. Climate Extremes: Patterns and Mechanisms, Wang et al., Eds., American Geophysical Union, 1-38, https://doi.org/10.1002/9781119068020.ch1.
Yu, M. X., Q. F. Li, M. J. Hayes, M. D. Svoboda, and R. R. Heim, 2014: Are droughts becoming more frequent or severe in China based on the standardized precipitation evapotranspiration index: 1951-2010? International Journal of Climatology, 34(3), 545−558, https://doi.org/10.1002/joc.3701.
Yuan, Y., and S. Yang, 2012: Impacts of different types of El Niño on the East Asian climate: focus on ENSO cycles. J. Climate, 25, 7702−7722, https://doi.org/10.1175/JCLI-D-11-00576.1.
Zeng, D. W., X. Yuan, and J. K. Roundy, 2019: Effect of teleconnected land-atmosphere coupling on Northeast China persistent drought in spring-summer of 2017. J. Climate, 32(21), 7403−7420, https://doi.org/10.1175/JCLI-D-19-0175.1.
Zhang, D., Q. Zhang, A. D. Werner, and X. M. Liu, 2016: GRACE-Based hydrological drought evaluation of the Yangtze River Basin, China. Journal of Hydrometeorology, 17, 811−828, https://doi.org/10.1175/JHM-D-15-0084.1.
Zhang, L., F. Sielmann, K. Fraedrich, and X. F. Zhi, 2017: Atmospheric response to Indian Ocean Dipole forcing: Changes of Southeast China winter precipitation under global warming. Climate Dyn., 48, 1467−1482, https://doi.org/10.1007/s00382-016-3152-1.
Zhang, L., P. L. Wu, T. J. Zhou, and C. Xiao, 2018: ENSO transition from La Niña to El Niño drives prolonged spring-summer drought over north China. J. Climate, 31(9), 3509−3523, https://doi.org/10.1175/JCLI-D-17-0440.1.
Zhang, L. X., and T. J. Zhou, 2015: Drought over East Asia: A review. J. Climate, 28, 3375−3399, https://doi.org/10.1175/JCLI-D-14-00259.1.
Zhang, W. J., F. F. Jin, J. P. Li, and H. L. Ren, 2011: Contrasting impacts of two-type El Niño over the western North Pacific during boreal autumn. J. Meteor. Soc. Japan, 89(5), 563−569, https://doi.org/10.2151/jmsj.2011-510.
Zhang, W. J., F. F. Jin, J. X. Zhao, L. Qi, and H. L. Ren, 2013: The possible influence of a nonconventional El Niño on the severe autumn drought of 2009 in Southwest China. J. Climate, 26(21), 8392−8405, https://doi.org/10.1175/JCLI-D-12-00851.1.
Zhang, W. J., F. F. Jin, and A. Turner, 2014: Increasing autumn drought over southern China associated with ENSO regime shift. Geophys. Res. Lett., 41, 4020−4026, https://doi.org/10.1002/2014GL060130.