Abdillah, M. R., Y. Kanno, and T. Iwasaki, 2017: Tropical-extratropical interactions associated with East Asian cold air outbreaks. Part I: Interannual variability. J. Climate, 30, 2989−3007, https://doi.org/10.1175/JCLI-D-16-0152.1.
Ahmad, A., S. L. Li, F. F. Luo, and Y. Q. Gao, 2022: The unstable connection between Atlantic Multidecadal Oscillation and Indian Summer Monsoon in CESM-LE. Climate Dyn., 58, 1525−1537, https://doi.org/10.1007/S00382-021-05976-6.
Ai, Y., N. Jiang, W. H. Qian, J. C.-H. Leung, and Y. Y. Chen, 2022: Strengthened regulation of the onset of the South China Sea summer monsoon by the Northwest Indian Ocean warming in the past decade. Adv. Atmos. Sci., 39, 943−952, https://doi.org/10.1007/s00376-021-1364-8.
Allen R. J., and C. S. Zender, 2011: Forcing of the arctic oscillation by Eurasian snow cover. J. Climate, 24, 6528−6539, https://doi.org/10.1175/2011JCLI4157.1.
An, X. D., L. F. Sheng, Q. Liu, C. Li, Y. Gao, and J. P. Li, 2020: The combined effect of two westerly jet waveguides on heavy haze in the North China Plain in November and December 2015. Atmospheric Chemistry and Physics, 20, 4667−4680, https://acp.copernicus.org/articles/20/4667/2020/.
An, X. D., W. Chen, S. Fu, P. Hu, C. Li, and L. F. Sheng, 2022: Possible dynamic mechanisms of high- and low-latitude wave trains over Eurasia and their impacts on air pollution over the North China Plain in Early Winter. J. Geophys. Res., 127, e2022JD036732, https://doi.org/10.1029/2022JD036732.
Ashok, K., Z. Y. Guan, and T. Yamagata, 2001: Impact of the Indian Ocean Dipole on the relationship between the Indian monsoon rainfall and ENSO. Geophys. Res. Lett., 28, 4499−4502, https://doi.org/10.1029/2001GL013294.
Ashok, K., Z. Y. Guan, N. H. Saji, and T. Yamagata, 2004: Individual and combined influences of ENSO and the Indian Ocean Dipole on the Indian summer monsoon. J. Climate, 17, 3141−3155, https://doi.org/10.1175/1520-0442(2004)017<3141:IACIOE>2.0.CO;2.
Ayantika, D. C., R. Krishnan, M. Singh, P. Swapna, N. Sandeep, A. G. Prajeesh, and R. Vellore, 2021: Understanding the combined effects of global warming and anthropogenic aerosol forcing on the South Asian monsoon. Climate Dyn., 56, 1643−1662, https://doi.org/10.1007/s00382-020-05551-5.
Barnett, T. P., L. Dümenil, U. Schlese, E. Roeckner, and M. Latif, 1989: The effect of Eurasian snow cover on regional and global climate variations. J. Atmos. Sci., 46(5), 661−686, https://doi.org/10.1175/1520-0469(1989)046<0661:TEOESC>2.0.CO;2.
Bombardi, R. J., J. L. Kinter III, and O. W. Frauenfeld, 2019: A global gridded dataset of the characteristics of the rainy and dry seasons. Bull. Amer. Meteor. Soc., 100, 1315−1328, https://doi.org/10.1175/BAMS-D-18-0177.1.
Bombardi, R. J., V. Moron, and J. S. Goodnight, 2020: Detection, variability, and predictability of monsoon onset and withdrawal dates: A review. International Journal of Climatology, 40, 641−667, https://doi.org/10.1002/joc.6264.
Borah, P., V. Venugopal, J. Sukhatme, P. Muddebihal, and B. N. Goswami, 2019: Role of the North Atlantic in Indian Monsoon Droughts. Available from https://arxiv.org/abs/1911.10013.
Cai, Y. N., Z. S. Chen, and Y. Du, 2022: The role of Indian Ocean warming on extreme rainfall in central China during early summer 2020: Without significant El Niño influence. Climate Dyn., 59, 951−960, https://doi.org/10.1007/s00382-022-06165-9.
Cen, S. X., W. Chen, S. F. Chen, L. Wang, Y. Y. Liu, and J. L. Huangfu, 2022: Weakened influence of El Niño–Southern Oscillation on the zonal shift of the South Asian High after the early 1980s. International Journal of Climatology, 42, 7583−7597, https://doi.org/10.1002/joc.7666.
Chang, C. P., M. M. Lu, and S. Wang, 2011: The East Asian winter monsoon. The Global Monsoon System: Research and Forecast. 2nd ed, C. P. Chang et al., Eds., World Scientific, 99−109, https://doi.org/10.1142/8109.
Chen, J., W. Huang, L. Y. Jin, J. H. Chen, S. Q. Chen, and F. H. Chen, 2018: A climatological northern boundary index for the East Asian summer monsoon and its interannual variability. Science China Earth Sciences, 61, 13−22, https://doi.org/10.1007/s11430-017-9122-x.
Chen, J. Q., and S. Bordoni, 2014: Orographic effects of the Tibetan Plateau on the East Asian summer monsoon: An energetic perspective. J. Climate, 27(8), 3052−3072, https://doi.org/10.1175/JCLI-D-13-00479.1.
Chen, W., H. F. Graf, and R. H. Huang, 2000: The interannual variability of East Asian winter monsoon and its relation to the summer monsoon. Adv. Atmos. Sci., 17, 48−60, https://doi.org/10.1007/s00376-000-0042-5.
Chen, W., L. Wang, Y. K. Xue, and S. F. Sun, 2009: Variabilities of the spring river runoff system in East China and their relations to precipitation and sea surface temperature. International Journal of Climatology, 29, 1381−1394, https://doi.org/10.1002/joc.1785.
Chen, W., J. Feng, and R. G. Wu, 2013: Roles of ENSO and PDO in the Link of the East Asian Winter Monsoon to the following Summer Monsoon. J. Climate, 26, 622−635, https://doi.org/10.1175/JCLI-D-12-00021.1.
Chen, W., L. Wang, J. Feng, Z. P. Wen, T. J. Ma, X. Q. Yang, and C. H. Wang, 2019: Recent progress in studies of the variabilities and mechanisms of the East Asian Monsoon in a changing climate. Adv. Atmos. Sci., 36, 887−901, https://doi.org/10.1007/s00376-019-8230-y.
Chen, W., and Coauthors, 2021a: East Asian monsoon variability and its association with China’s climate under global warming. Climate and Ecological Environment Evolution in China 2021: The Science Basis, D. H. Qin and P. M. Zhai, Eds., Science Press. (in Chinese)
Chen, W., P. Hu, and J. L. Huangfu, 2022a: Multi-scale climate variations and mechanisms of the onset and withdrawal of the South China Sea summer monsoon. Science China Earth Sciences, 65, 1030−1046, https://doi.org/10.1007/s11430-021-9902-5.
Chen, X. D., A. G. Dai, Z. P. Wen, and Y. Y. Song, 2021b: Contributions of Arctic sea‐ice loss and East Siberian atmospheric blocking to 2020 record‐breaking Meiyu‐Baiu rainfall. Geophys. Res. Lett., 48, e2021GL092748, https://doi.org/10.1029/2021GL092748.
Chen, X. D., Z. P. Wen, Y. Y. Song, and Y. Y. Guo, 2022b: Causes of extreme 2020 Meiyu-Baiu rainfall: A study of combined effect of Indian Ocean and Arctic. Climate Dyn., 59, 3485−3501, https://doi.org/10.1007/S00382-022-06279-0.
Chou, C., D. Ryu, M.-H. Lo, H.-W. Wey, and H. M. Malano, 2018: Irrigation-induced land-atmosphere feedbacks and their impacts on Indian Summer Monsoon. J. Climate, 31, 8785−8801, https://doi.org/10.1175/JCLI-D-17-0762.1.
Chowdary, J. S., A. B. Bandgar, C. Gnanaseelan, and J. J. Luo, 2015: Role of tropical Indian Ocean Air-Sea interactions in modulating Indian summer monsoon in a coupled model. Atmos. Sci. Lett., 16, 170−176, https://doi.org/10.1002/asl2.561.
Chowdary, J. S., K. M. Hu, G. Srinivas, Y. Kosaka, L. Wang, and K. K. Rao, 2019: The Eurasian Jet streams as conduits for East Asian monsoon variability. Current Climate Change Reports, 5, 233−244, https://doi.org/10.1007/s40641-019-00134-x.
Chu, Q. C., T. Lian, D. K. Chen, X. J. Wang, J. Feng, G. L. Feng, S. L. Qu, and Z. P. Zhang, 2022: The role of El Niño in the extreme Mei-Yu rainfall in 2020. Atmospheric Research, 266, 105965, https://doi.org/10.1016/j.atmosres.2021.105965.
Crétat, J., P. Terray, S. Masson, K. P. Sooraj, and M. K. Roxy, 2017: Indian Ocean and Indian summer monsoon: Relationships without ENSO in ocean-atmosphere coupled simulations. Climate Dyn., 49, 1429−1448, https://doi.org/10.1007/s00382-016-3387-x.
Dai, A. G., and J. C. Deng, 2022: Recent Eurasian winter cooling partly caused by internal multidecadal variability amplified by Arctic sea ice-air interactions. Climate Dyn., 58, 3261−3277, https://doi.org/10.1007/s00382-021-06095-y.
Dandi, R. A., J. S. Chowdary, P. A. Pillai, N. S. S. Sidhan, K. Koteswararao, and S. Ramakrishna, 2020: Impact of El Niño Modoki on Indian summer monsoon rainfall: Role of western north Pacific circulation in observations and CMIP5 models. International Journal of Climatology, 40, 2117−2133, https://doi.org/10.1002/joc.6322.
Deng, K. Q., S. Yang, D. J. Gu, A. L. Lin, and C. H. Li, 2020: Record-breaking heat wave in southern China and delayed onset of South China Sea summer monsoon driven by the Pacific subtropical high. Climate Dyn., 54, 3751−3764, https://doi.org/10.1007/s00382-020-05203-8.
Ding, L. D., T. Li, and Y. Sun, 2021a: Subseasonal and synoptic variabilities of precipitation over the Yangtze River Basin in the summer of 2020. Adv. Atmos. Sci., 38, 2108−2124, https://doi.org/10.1007/s00376-021-1133-8.
Ding, Q. H., and B. Wang, 2005: Circumglobal teleconnection in the northern Hemisphere summer. J. Climate, 18, 3483−3505, https://doi.org/10.1175/JCLI3473.1.
Ding, Q. H., and B. Wang, 2007: Intraseasonal teleconnection between the summer Eurasian wave train and the Indian monsoon. J. Climate, 20, 3751−3767, https://doi.org/10.1175/JCLI4221.1.
Ding, S. Y., B. Y. Wu, and W. Chen, 2021b: Dominant characteristics of early autumn arctic Sea Ice variability and its impact on Winter Eurasian Climate. J. Climate, 34, 1825−1846, https://doi.org/10.1175/JCLI-D-19-0834.1.
Ding, Y. H., 1994: Monsoons over China. Springer, 420 pp, https://doi.org/10.1007/978-94-015-8302-2.
Ding, Y. H., 2007: The variability of the Asian summer monsoon. J. Meteor. Soc. Japan, 85B, 21−54, https://doi.org/10.2151/jmsj.85B.21.
Ding, Y. H., and T. N. Krishnamurti, 1987: Heat budget of the Siberian high and the winter monsoon. Mon. Wea. Rev., 115, 2428−2449, https://doi.org/10.1175/1520-0493(1987)115<2428:HBOTSH>2.0.CO;2.
Ding, Y. H., and J. C. L. Chan, 2005: The East Asian summer monsoon: An overview. Meteorol. Atmos. Phys., 89, 117−142, https://doi.org/10.1007/s00703-005-0125-z.
Ding, Y. H., and Coauthors, 2014: Interdecadal variability of the East Asian winter monsoon and its possible links to global climate change. J. Meteor. Res., 28, 693−713, https://doi.org/10.1007/s13351-014-4046-y.
Ding, Y. H., Y. J. Liu, Y. F. Song, and J. Zhang, 2015: From MONEX to the global monsoon: A review of monsoon system research. Adv. Atmos. Sci., 32, 10−31, https://doi.org/10.1007/s00376-014-0008-7.
Ding, Y. H., P. Liang, Y. J. Liu, and Y. C. Zhang, 2020: Multiscale variability of Meiyu and its prediction: A new review. J. Geophys. Res., 125, e2019JD031496, https://doi.org/10.1029/2019JD031496.
Ding, Y. H., Y. Y. Liu, and Z.-Z. Hu, 2021c: The record-breaking mei-yu in 2020 and associated atmospheric circulation and tropical SST anomalies. Adv. Atmos. Sci., 38, 1980−1993, https://doi.org/10.1007/s00376-021-0361-2.
Dong, Z. Z., and L. Wang, 2022: Quasi-biweekly oscillation over the western North Pacific in boreal winter and its influence on the central North American air temperature. J. Climate, 35(6), 1901−1913, https://doi.org/10.1175/JCLI-D-21-0531.1.
Duan, A. M., and G.-X. Wu, 2005: Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia. Climate Dyn., 24(7−8), 793−807, https://doi.org/10.1007/s00382-004-0488-8.
Duan, A. M., Z. X. Xiao, and Z. Q. Wang, 2018: Impacts of the Tibetan Plateau winter/spring snow depth and surface heat source on Asian summer monsoon: A review. Chinese Journal of Atmospheric Sciences, 42, 755−766, https://doi.org/10.3878/j.issn.1006-9895.1801.17247. (in Chinese with English abstract
Enomoto, T., B. J. Hoskins, and Y. Matsuda, 2003: The formation mechanism of the Bonin high in August. Quart. J. Roy. Meteor. Soc., 129, 157−178, https://doi.org/10.1256/qj.01.211.
Fan, F. X., R. P. Lin, X. H. Fang, F. Xue, F. Zheng, and J. Zhu, 2021: Influence of the eastern Pacific and Central Pacific types of ENSO on the South Asian summer monsoon. Adv. Atmos. Sci., 38, 12−28, https://doi.org/10.1007/s00376-020-0055-1.
Feba, F., K. Ashok, and M. Ravichandran, 2019: Role of changed Indo-Pacific atmospheric circulation in the recent disconnect between the Indian summer monsoon and ENSO. Climate Dyn., 52, 1461−1470, https://doi.org/10.1007/s00382-018-4207-2.
Feng, J., and W. Chen, 2021: Roles of the North Indian Ocean SST and tropical North Atlantic SST in the latitudinal extension of the anomalous western North Pacific anticyclone during the El Niño decaying summer. J. Climate, 34, 8503−8517, https://doi.org/10.1175/JCLI-D-20-0802.1.
Feng, J., and W. Chen, 2022: Respective and combined Impacts of North Indian Ocean and tropical North Atlantic SST anomalies on the subseasonal evolution of anomalous western North Pacific anticyclones. J. Climate, 35, 5623−5636, https://doi.org/10.1175/JCLI-D-21-0799.1.
Fu, S. M., H. Tang, J. H. Sun, T. B. Zhao, and W. L. Li, 2022: Historical rankings and vortices’ activities of the extreme Mei-Yu seasons: Contrast 2020 to previous Mei-Yu seasons. Geophys. Res. Lett., 49, e2021GL096590, https://doi.org/10.1029/2021GL096590.
Ge, Z.-A., L. Chen, T. Li, and L. Wang, 2022: How frequently will the persistent heavy rainfall over the Middle and Lower Yangtze River Basin in Summer 2020 happen under global warming. Adv. Atmos. Sci., 39, 1673−1692, https://doi.org/10.1007/s00376-022-1351-8.
Gong, H. N., L. Wang, W. Chen, and R. G. Wu, 2019a: Attribution of the East Asian winter temperature trends during 1979-2018: Role of external forcing and internal variability. Geophys. Res. Lett., 46, 10 874−10 881, https://doi.org/10.1029/2019GL084154.
Gong, H. N., L. Wang, W. Chen, and R. G. Wu, 2019b: Time‐varying contribution of internal dynamics to wintertime land temperature trends over the northern Hemisphere. Geophys. Res. Lett., 46, 14 674−14 682, https://doi.org/10.1029/2019GL086220.
Gong, H. N., L. Wang, W. Chen, and R. G. Wu, 2021: Evolution of the East Asian winter land temperature trends during 1961-2018: Role of internal variability and external forcing. Environmental Research Letters, 16, 024015, https://doi.org/10.1088/1748-9326/abd586.
Goswami, B. N., M. S. Madhusoodanan, C. P. Neema, and D. Sengupta, 2006: A physical mechanism for North Atlantic SST influence on the Indian summer monsoon. Geophys. Res. Lett., 33, L02706, https://doi.org/10.1029/2005GL024803.
Gu, W., L. Wang, Z.-Z. Hu, K. M. Hu, and Y. Li, 2018: Interannual variations of the first rainy season precipitation over South China. J. Climate, 31, 623−640, https://doi.org/10.1175/JCLI-D-17-0284.1.
Guo, Y. Y., R. J. Zhang, Z. P. Wen, J. C. Li, C. Zhang, and Z. J. Zhou, 2021: Understanding the role of SST anomaly in extreme rainfall of 2020 Meiyu season from an interdecadal perspective. Science China Earth Sciences, 64, 1619−1632, https://doi.org/10.1007/s11430-020-9762-0.
Ha, K.-J., Y.-W. Seo, J.-Y. Lee, R. Kripalani, and K.-S. Yun, 2018: Linkages between the South and East Asian summer monsoons: A review and revisit. Climate Dyn., 51, 4207−4227, https://doi.org/10.1007/s00382-017-3773-z.
He, J. H., and Z. W. Zhu, 2015: The relation of South China Sea monsoon onset with the subsequent rainfall over the subtropical East Asia. International Journal of Climatology, 35, 4547−4556, https://doi.org/10.1002/joc.4305.
He, J. H., H. Lin, and Z. W. Wu, 2011: Another look at influences of the Madden-Julian Oscillation on the wintertime East Asian weather. J. Geophys. Res., 116, D03109, https://doi.org/10.1029/2010JD014787.
He, J. H., J. H. Ju, Z. P. Wen, J. M. Lü, and Q. H. Jin, 2007: A review of recent advances in research on Asian monsoon in China. Adv. Atmos. Sci., 24, 972−992, https://doi.org/10.1007/s00376-007-0972-2.
He, S. P., 2013: Reduction of the East Asian winter monsoon interannual variability after the mid-1980s and possible cause. Chinese Science Bulletin, 58, 1331−1338, https://doi.org/10.1007/s11434-012-5468-5.
Hrudya, P. H., H. Varikoden, R. Vishnu, and J. Kuttippurath, 2020: Changes in ENSO-monsoon relations from early to recent decades during onset, peak and withdrawal phases of Indian summer monsoon. Climate Dyn., 55, 1457−1471, https://doi.org/10.1007/s00382-020-05335-x.
Hrudya, P. P. V. H., H. Varikoden, and R. N. Vishnu, 2021: Changes in the relationship between Indian Ocean dipole and Indian summer monsoon rainfall in early and recent multidecadal epochs during different phases of monsoon. International Journal of Climatology, 41, E305−E318, https://doi.org/10.1002/joc.6685.
Hsu, H.-H., T. J. Zhou, and J. Matsumoto, 2014: East Asian, Indochina and western North Pacific summer monsoon-an update. Asia-Pacific Journal of Atmospheric Sciences, 50, 45−68, https://doi.org/10.1007/s13143-014-0027-4.
Hu, D., A. M. Duan, and P. Zhang, 2022a: Association between regional summer monsoon onset in South Asia and Tibetan Plateau thermal forcing. Climate Dyn., 59, 1115−1132, https://doi.org/10.1007/s00382-022-06174-8.
Hu, P., W. Chen, R. P. Huang, and D. Nath, 2018: On the weakening relationship between the South China Sea summer monsoon onset and cross-equatorial flow after the Late 1990s. International Journal of Climatology, 38, 3202−3208, https://doi.org/10.1002/joc.5472.
Hu, P., W. Chen, and S. F. Chen, 2019a: Interdecadal change in the South China Sea summer monsoon withdrawal around the mid-2000s. Climate Dyn., 52, 6053−6064, https://doi.org/10.1007/s00382-018-4494-7.
Hu, P., W. Chen, S. F. Chen, and R. P. Huang, 2019b: Interannual variability and triggers of the South China Sea summer monsoon withdrawal. Climate Dyn., 53, 4355−4372, https://doi.org/10.1007/s00382-019-04790-5.
Hu, P., W. Chen, R. P. Huang, and D. Nath, 2019c: Climatological characteristics of the synoptic changes accompanying South China Sea summer monsoon withdrawal. International Journal of Climatology, 39, 596−612, https://doi.org/10.1002/joc.5828.
Hu, P., W. Chen, S. F. Chen, and R. P. Huang, 2020a: Statistical analysis of the impacts of intra-seasonal oscillations on the South China Sea summer monsoon withdrawal. International Journal of Climatology, 40, 1919−1927, https://doi.org/10.1002/joc.6284.
Hu, P., W. Chen, S. F. Chen, Y. Y. Liu, and R. P. Huang, 2020b: Extremely early summer monsoon onset in the South China Sea in 2019 following an El Niño event. Mon. Wea. Rev., 148, 1877−1890, https://doi.org/10.1175/MWR-D-19-0317.1.
Hu, P., W. Chen, S. F. Chen, Y. Y. Liu, R. P. Huang, and S. R. Dong, 2020c: Relationship between the South China Sea summer monsoon withdrawal and September–October rainfall over southern China. Climate Dyn., 54, 713−726, https://doi.org/10.1007/s00382-019-05026-2.
Hu, P., W. Chen, S. F. Chen, Y. Y. Liu, L. Wang, and R. P. Huang, 2020d: Impact of the September silk road pattern on the South China Sea summer monsoon withdrawal. International Journal of Climatology, 40, 6361−6368, https://doi.org/10.1002/joc.6585.
Hu, P., W. Chen, S. F. Chen, Y. Y. Liu, L. Wang, and R. P. Huang, 2021: Impact of the March arctic oscillation on the South China Sea summer monsoon onset. International Journal of Climatology, 41, E3239−E3248, https://doi.org/10.1002/joc.6920.
Hu, P., W. Chen, S. F. Chen, L. Wang, and Y. Y. Liu, 2022b: The weakening relationship between ENSO and the South China Sea summer monsoon onset in recent decades. Adv. Atmos. Sci., 39, 443−455, https://doi.org/10.1007/s00376-021-1208-6.
Hu, P., W. Chen, Z. B. Li, S. F. Chen, L. Wang, and Y. Y. Liu, 2022c: Close linkage of the South China Sea Summer monsoon onset and extreme rainfall in may over Southeast Asia: Role of the synoptic-scale systems. J. Climate, 35, 4347−4362, https://doi.org/10.1175/JCLI-D-21-0740.1.
Hu, P., W. Chen, S. F. Chen, Y. Y. Liu, L. Wang, and R. P. Huang, 2022d: The leading mode and factors for coherent variations among the subsystems of tropical Asian summer monsoon onset. J. Climate, 35(5), 1597−1612, https://doi.org/10.1175/JCLI-D-21-0101.1.
Hu, P., W. Chen, L. Wang, S. F. Chen, Y. Y. Liu, and L. Y. Chen. 2022e: Revisiting the ENSO–monsoonal rainfall relationship: New insights based on an objective determination of the Asian summer monsoon duration. Environmental Research Letters, 17(10): 104050, https://doi.org/10.1088/1748-9326/ac97ad.
Huang, G., 2004: An index measuring the interannual variation of the East Asian summer monsoon—The EAP index. Adv. Atmos. Sci., 21, 41−52, https://doi.org/10.1007/BF02915679.
Huang, M., J. D. Li, G. Zeng, and Y. K. Xie, 2020a: Regional characteristics of cloud radiative effects before and after the South China Sea summer monsoon onset. J. Meteor. Res., 34, 1167−1182, https://doi.org/10.1007/s13351-020-0018-6.
Huang, R. H., and F. Y. Sun, 1992: Impacts of the tropical western Pacific on the East Asian summer monsoon. J. Meteor. Soc. Japan, 70, 243−256, https://doi.org/10.2151/jmsj1965.70.1B_243.
Huang, R. H., L. T. Zhou, and W. Chen, 2003: The progresses of recent studies on the variabilities of the East Asian monsoon and their causes. Adv. Atmos. Sci., 20, 55−69, https://doi.org/10.1007/BF03342050.
Huang, R. H., W. Chen, B. L. Yang, and R. H. Zhang, 2004: Recent advances in studies of the interaction between the East Asian winter and summer monsoons and ENSO cycle. Adv. Atmos. Sci., 21, 407−424, https://doi.org/10.1007/BF02915568.
Huang, R. H., L. Gu, L. T. Zhou, and S. S. Wu, 2006: Impact of the thermal state of the tropical western Pacific on onset date and process of the South China Sea summer monsoon. Adv. Atmos. Sci., 23, 909−924, https://doi.org/10.1007/s00376-006-0909-1.
Huang, R. H., J. L. Chen, L. Wang, and Z. D. Lin, 2012: Characteristics, processes, and causes of the Spatio-temporal variabilities of the East Asian monsoon system. Adv. Atmos. Sci., 29, 910−942, https://doi.org/10.1007/s00376-012-2015-x.
Huang, R. H., Y. Liu, Z. C. Du, J. L. Chen, and J. L. Huangfu, 2017: Differences and links between the East Asian and South Asian summer monsoon systems: Characteristics and variability. Adv. Atmos. Sci., 34, 1204−1218, https://doi.org/10.1007/s00376-017-7008-3.
Huang, X., and Coauthors, 2020b: The recent decline and recovery of Indian Summer monsoon rainfall: Relative roles of external forcing and internal variability. J. Climate, 33, 5035−5060, https://doi.org/10.1175/JCLI-D-19-0833.1.
Huangfu, J. L., R. H. Huang, and W. Chen, 2017: Relationship between the South China Sea summer monsoon onset and tropical cyclone genesis over the western North Pacific. International Journal of Climatology, 37, 5206−5210, https://doi.org/10.1002/joc.5141.
Jang, Y.-S., J.-S. Kug, and B.-M. Kim, 2019: How well do current climate models simulate the linkage between Arctic warming and extratropical cold winters. Climate Dyn., 53, 4005−4018, https://doi.org/10.1007/s00382-019-04765-6.
Jeong, J. H., and C. H. Ho, 2005: Changes in occurrence of cold surges over east Asia in association with Arctic Oscillation. Geophys. Res. Lett., 32, L14704, https://doi.org/10.1029/2005GL023024.
Jeong, Y. C., S. W. Yeh, Y. K. Lim, A. Santoso, and G. J. Wang, 2022: Indian Ocean warming as key driver of long-term positive trend of Arctic Oscillation. npj Clim Atmos Sci, 5, 56, https://doi.org/10.1038/s41612-022-00279-x.
Jiang, J. L., Y. M. Liu, J. Y. Mao, J. P. Li, S. W. Zhao, and Y. Q. Yu, 2022: Three types of positive Indian Ocean Dipoles and their relationships with the South Asian Summer Monsoon. J. Climate, 35, 405−424, https://doi.org/10.1175/JCLI-D-21-0089.1.
Jiang, N., and C. W. Zhu, 2021: Seasonal forecast of South China Sea summer monsoon onset disturbed by cold tongue La Niña in the past decade. Adv. Atmos. Sci., 38, 147−155, https://doi.org/10.1007/s00376-020-0090-y.
Jiang, X. W., Z. Y. Wang, and Z. N. Li, 2018: Signature of the South China Sea summer monsoon onset on spring-to-summer transition of rainfall in the middle and lower reaches of the Yangtze River basin. Climate Dyn., 51, 3785−3796, https://doi.org/10.1007/s00382-018-4110-x.
Jiao, Y., R. G. Wu, and L. Song, 2019: Individual and combined impacts of two Eurasian wave trains on intraseasonal East Asian winter monsoon variability. J. Geophys. Res., 124, 4530−4548, https://doi.org/10.1029/2018JD029953.
Jiao, Y, and R. G. Wu, 2019, Propagation and influence on tropical precipitation of intraseasonal variation over mid-latitude East Asia in boreal winter. Atmospheric and Oceanic Science Letters, 12(3), 155−161.
Jin, Q. J., and C. E. Wang, 2017: A revival of Indian summer monsoon rainfall since 2002. Nature Climate Change, 7, 587−594, https://doi.org/10.1038/nclimate3348.
Joshi, M. K., and F. Kucharski, 2017: Impact of Interdecadal Pacific oscillation on Indian summer monsoon rainfall: An assessment from CMIP5 climate models. Climate Dyn., 48, 2375−2391, https://doi.org/10.1007/s00382-016-3210-8.
Kang, L. H., W. Chen, and K. Wei, 2006: The interdecadal variation of winter temperature in China and its relation to the anomalies in atmospheric general circulation. Climatic and Environmental Research, 11, 330−339, https://doi.org/10.3969/j.issn.1006-9585.2006.03.009. (in Chinese with English abstract
Kim, S., H. Y. Son, and J. S. Kug, 2018: Relative roles of equatorial central Pacific and western North Pacific precipitation anomalies in ENSO teleconnection over the North Pacific. Climate Dyn., 51, 4345−4355, https://doi.org/10.1007/s00382-017-3779-6.
Kong, W. W., and J. C. H. Chiang, 2020: Interaction of the westerlies with the Tibetan Plateau in determining the Mei-Yu termination. J. Climate, 33(1), 339−363, https://doi.org/10.1175/JCLI-D-19-0319.1.
Kosaka, Y., 2021: Chapter 13 - Coupling of the Indian, western North Pacific, and East Asian summer monsoons. Indian Summer Monsoon Variability, J. Chowdary, A. Parekh, and C. Gnanaseelan, Eds., Elsevier, 263−286, https://doi.org/10.1016/B978-0-12-822402-1.00002-8.
Kosaka, Y., and S.-P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403−407, https://doi.org/10.1038/nature12534.
Kripalani, R., K.-J. Ha, C.-H. Ho, J.-H. Oh, B. Preethi, M. Mujumdar, and A. Prabhu, 2022: Erratic Asian summer monsoon 2020: COVID-19 lockdown initiatives possible cause for these episodes. Climate Dyn., 59, 1339−1352, https://doi.org/10.1007/s00382-021-06042-x.
Krishnamurthy, L., and V. Krishnamurthy, 2014: Influence of PDO on South Asian summer monsoon and monsoon-ENSO relation. Climate Dyn., 42, 2397−2410, https://doi.org/10.1007/s00382-013-1856-z.
Krishnamurthy, L., and V. Krishnamurthy, 2016: Teleconnections of Indian monsoon rainfall with AMO and Atlantic tripole. Climate Dyn., 46, 2269−2285, https://doi.org/10.1007/s00382-015-2701-3.
Krishnamurthy, V., and B. N. Goswami, 2000: Indian monsoon-ENSO relationship on interdecadal timescale. J. Climate, 13, 579−595, https://doi.org/10.1175/1520-0442(2000)013<0579:IMEROI>2.0.CO;2.
Krishnaswamy, J., S. Vaidyanathan, B. Rajagopalan, M. Bonell, M. Sankaran, R. S. Bhalla, and S. Badiger, 2015: Non-stationary and non-linear influence of ENSO and Indian Ocean Dipole on the variability of Indian monsoon rainfall and extreme rain events. Climate Dyn., 45, 175−184, https://doi.org/10.1007/s00382-014-2288-0.
Kucharski, F., A. Bracco, J. H. Yoo, and F. Molteni, 2007: Low-frequency variability of the Indian monsoon-ENSO relationship and the tropical Atlantic: The “Weakening” of the 1980s and 1990s. J. Climate, 20, 4255−4266, https://doi.org/10.1175/JCLI4254.1.
Kucharski, F., A. Bracco, J. H. Yoo, and F. Molteni, 2008: Atlantic forced component of the Indian monsoon interannual variability. Geophys. Res. Lett., 35, L04706, https://doi.org/10.1029/2007GL033037.
Kucharski, F., A. Bracco, J. H. Yoo, A. M. Tompkins, L. Feudale, P. Ruti, and A. Dell'Aquila, 2009: A Gill-Matsuno-type mechanism explains the tropical Atlantic influence on African and Indian monsoon rainfall. Quart. J. Roy. Meteor. Soc., 135, 569−579, https://doi.org/10.1002/qj.406.
Kug, J.-S., J.-H. Jeong, Y.-S. Jang, B.-M. Kim, C. K. Folland, S.-K. Min, and S.-W. Son, 2015: Two distinct influences of Arctic warming on cold winters over North America and East Asia. Nature Geoscience, 8, 759−762, https://doi.org/10.1038/ngeo2517.
Kumar, K. K., B. Rajagopalan, and M. A. Cane, 1999: On the weakening relationship between the Indian monsoon and ENSO. Science, 284, 2156−2159, https://doi.org/10.1126/science.284.5423.2156.
Kumar, K. K., B. Rajagopalan, M. Hoerling, G. Bates, and M. Cane, 2006: Unraveling the mystery of Indian monsoon failure during El Niño. Science, 314, 115−119, https://doi.org/10.1126/science.1131152.
Kumar, P. K., and A. Singh, 2021: Increase in summer monsoon rainfall over the northeast India during El Niño years since 1600. Climate Dyn., 57, 851−863, https://doi.org/10.1007/s00382-021-05743-7.
Lee, S.-S., J.-E. Chu, A. Timmermann, E.-S. Chung, and J.-Y. Lee, 2021: East Asian climate response to COVID-19 lockdown measures in China. Scientific Reports, 11, 16852, https://doi.org/10.1038/s41598-021-96007-1.
Li, L., C. W. Zhu, R. H. Zhang, and B. Q. Liu, 2021a: Roles of the Tibetan Plateau vortices in the record Meiyu rainfall in 2020. Atmos. Sci. Lett., 22, e1017, https://doi.org/10.1002/asl.1017.
Li, X. Q., M. F. Ting, C. H. Li, and N. Henderson, 2015: Mechanisms of Asian summer monsoon changes in response to anthropogenic forcing in CMIP5 Models. J. Climate, 28, 4107−4125, https://doi.org/10.1175/JCLI-D-14-00559.1.
Li, Z. B., Y. Sun, T. Li, W. Chen, and Y. H. Ding, 2021b: Projections of South Asian summer monsoon under global warming from 1.5°C to 5°C. J. Climate, 34, 7913−7926, https://doi.org/10.1175/JCLI-D-20-0547.1.
Li, Z. H., Y. L. Luo, Y. Du, and J. C. L. Chan, 2020: Statistical characteristics of pre-summer rainfall over South China and associated synoptic conditions. J. Meteor. Soc. Japan, 98, 213−233, https://doi.org/10.2151/jmsj.2020-012.
Liang, P., Z.-Z. Hu, Y. H. Ding, and Q. W. Qian, 2021: The extreme Mei-yu season in 2020: Role of the madden-Julian oscillation and the cooperative influence of the pacific and Indian Oceans. Adv. Atmos. Sci., 38, 2040−2054, https://doi.org/10.1007/s00376-021-1078-y.
Lin, A. L., and R. H. Zhang, 2020: Climate shift of the South China Sea summer monsoon onset in 1993/1994 and its physical causes. Climate Dyn., 54, 1819−1827, https://doi.org/10.1007/s00382-019-05086-4.
Lin, Z. D., R. Y. Lu, and R. G. Wu, 2017: Weakened impact of the Indian early summer monsoon on North China rainfall around the late 1970s: Role of basic-state change. J. Climate, 30, 7991−8005, https://doi.org/10.1175/JCLI-D-17-0036.1.
Liu, B. Q., and C. W. Zhu, 2019: Extremely Late Onset of the 2018 South China Sea summer monsoon following a La Niña event: Effects of triple SST anomaly mode in the North Atlantic and a weaker Mongolian cyclone. Geophys. Res. Lett., 46, 2956−2963, https://doi.org/10.1029/2018GL081718.
Liu, B. Q., and C. W. Zhu, 2020: Boosting effect of tropical cyclone “Fani” on the onset of the South China Sea summer monsoon in 2019. J. Geophys. Res., 125, e2019JD031891, https://doi.org/10.1029/2019JD031891.
Liu, B. Q., and C. W. Zhu, 2021: Subseasonal-to-seasonal predictability of onset dates of South China Sea summer monsoon: A perspective of meridional temperature gradient. J. Climate, 34, 5601−5616, https://doi.org/10.1175/JCLI-D-20-0696.1.
Liu, B. Q., Y. H. Yan, C. W. Zhu, S. M. Ma, and J. Y. Li, 2020: Record‐breaking Meiyu rainfall around the Yangtze River in 2020 regulated by the subseasonal phase transition of the North Atlantic Oscillation. Geophys. Res. Lett., 47, e2020GL090342, https://doi.org/10.1029/2020GL090342.
Liu, B. Q., Y. M. Liu, G. X. Wu, J. H. Yan, J. H. He, and S. L. Ren, 2015: Asian summer monsoon onset barrier and its formation mechanism. Climate Dyn., 45, 711−726, https://doi.org/10.1007/s00382-014-2296-0.
Liu, Y., and R. H. Huang, 2019: Linkages between the South and East Asian monsoon water vapor transport during boreal summer. J. Climate, 32, 4509−4524, https://doi.org/10.1175/JCLI-D-18-0498.1.
Lu, C. H., Y. Sun, and X. B. Zhang, 2022: The 2020 Record-Breaking Mei-yu in the Yangtze River valley of China: The role of anthropogenic forcing and atmospheric circulation. Bull. Amer. Meteor. Soc., 103, S98−S104, https://doi.org/10.1175/BAMS-D-21-0161.1.
Lu, R. Y., and Z. D. Lin, 2009: Role of subtropical precipitation anomalies in maintaining the summertime meridional teleconnection over the western North Pacific and East Asia. J. Climate, 22, 2058−2072, https://doi.org/10.1175/2008JCLI2444.1.
Luo, F. F., S. L. Li, and T. Furevik, 2011: The connection between the Atlantic Multidecadal Oscillation and the Indian Summer Monsoon in Bergen Climate Model Version 2.0. J. Geophys. Res., 116, D19117, https://doi.org/10.1029/2011JD015848.
Luo, F. F., S. L. Li, Y. Q. Gao, N. Keenlyside, L. Svendsen, and T. Furevik, 2018a: The connection between the Atlantic multidecadal oscillation and the Indian summer monsoon in CMIP5 models. Climate Dyn., 51, 3023−3039, https://doi.org/10.1007/s00382-017-4062-6.
Luo, F. F., S. L. Li, Y. Q. Gao, L. Svendsen, T. Furevik, and N. Keenlyside, 2018b: The connection between the Atlantic Multidecadal Oscillation and the Indian summer monsoon since the industrial revolution is intrinsic to the climate system. Environmental Research Letters, 13, 094020, https://doi.org/10.1088/1748-9326/aade11.
Luo, F. F., S. L. Li, and T. Furevik, 2018c: Weaker connection between the Atlantic Multidecadal Oscillation and Indian summer rainfall since the mid-1990s. Atmos. Ocean. Sci. Lett., 11, 37−43, https://doi.org/10.1080/16742834.2018.1394779.
Luo, Y. L., R. D. Xia, and J. C. L. Chan, 2020: Characteristics, physical mechanisms, and prediction of pre-summer rainfall over South China: Research progress during 2008−2019. J. Meteor. Soc. Japan, 98, 19−42, https://doi.org/10.2151/jmsj.2020-002.
Ma, T. J., and W. Chen, 2021: Climate variability of the East Asian winter monsoon and associated extratropical–tropical interaction: A review. Annals of the New York Academy of Sciences, 1504, 44−62, https://doi.org/10.1111/nyas.14620.
Ma, T. J., W. Chen, J. L. Huangfu, L. Song, and Q. Y. Cai, 2021: The observed influence of the Quasi-Biennial Oscillation in the lower equatorial stratosphere on the East Asian winter monsoon during early boreal winter. International Journal of Climatology, 41, 6254−6269, https://doi.org/10.1002/joc.7192.
Ma, T. J., W. Chen, H. N. Gong, P. Hu, Y. Jiao, X. D. An, and L. Wang, 2022a: Linkage of strong intraseasonal events of the East Asian winter monsoon to the tropical convections over the western Pacific. Remote Sensing, 14, 2993, https://doi.org/10.3390/rs14132993.
Ma, T. J., and Coauthors, 2022b: Different ENSO teleconnections over East Asia in early and late winter: Role of precipitation anomalies in the tropical Indian Ocean and far western Pacific. J. Climate, 35, 4319−4335, https://doi.org/10.1175/JCLI-D-21-0805.1.
Ma, Y. Y., Z. Y. Hu, X. H. Meng, F. Liu, and W. J. Dong, 2022c: Was the record‐breaking Mei-yu of 2020 enhanced by regional climate change. Bull. Amer. Meteor. Soc., 103, S76−S82, https://doi.org/10.1175/BAMS-D-21-0187.1.
Maharana, P., R. Agnihotri, and A. P. Dimri, 2021: Changing Indian monsoon rainfall patterns under the recent warming period 2001−2018. Climate Dyn., 57, 2581−2593, https://doi.org/10.1007/s00382-021-05823-8.
Mahendra, N., J. S. Chowdary, P. Darshana, P. Sunitha, A. Parekh, and C. Gnanaseelan, 2021: Interdecadal modulation of interannual ENSO-Indian summer monsoon rainfall teleconnections in observations and CMIP6 models: Regional patterns. International Journal of Climatology, 41, 2528−2552, https://doi.org/10.1002/joc.6973.
Malik, A., S. Brönnimann, A. Stickler, C. C. Raible, S. Muthers, J. Anet, E. Rozanov, and W. Schmutz, 2017: Decadal to multi-decadal scale variability of Indian summer monsoon rainfall in the coupled ocean-atmosphere-chemistry climate model SOCOL-MPIOM. Climate Dyn., 49, 3551−3572, https://doi.org/10.1007/s00382-017-3529-9.
Martin, G. M., A. Chevuturi, R. E. Comer, N. J. Dunstone, A. A. Scaife, and D. Q. Zhang, 2019: Predictability of South China Sea summer monsoon onset. Adv. Atmos. Sci., 36, 253−260, https://doi.org/10.1007/s00376-018-8100-z.
McIntyre, M. E., and T. N. Palmer, 1983: Breaking planetary waves in the stratosphere. Nature, 305, 593−600, https://doi.org/10.1038/305593a0.
Miao, J. P., and T. Wang, 2020: Decadal variations of the East Asian winter monsoon in recent decades. Atmos. Sci. Lett., 21, e960, https://doi.org/10.1002/asl.960.
Miao, J. P., and D. B. Jiang, 2021: Multidecadal variations in the East Asian Winter Monsoon and their relationship with the Atlantic multidecadal oscillation since 1850. J. Climate, 34, 7525−7539, https://doi.org/10.1175/JCLI-D-21-0073.1.
Miao, J. P., T. Wang, H. J. Wang, Y. L. Zhu, and J. Q. Sun, 2018: Interdecadal weakening of the East Asian winter monsoon in the Mid-1980s: The roles of external forcings. J. Climate, 31, 8985−9000, https://doi.org/10.1175/JCLI-D-17-0868.1.
Nair, P. J., A. Chakraborty, H. Varikoden, P. A. Francis, and J. Kuttippurath, 2018: The local and global climate forcings induced inhomogeneity of Indian rainfall. Sci. Rep., 8, 6026, https://doi.org/10.1038/s41598-018-24021-x.
Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373−390, https://doi.org/10.2151/jmsj1965.65.3_373.
Niu, R. Y., P. M. Zhai, and G. R. Tan, 2021: Anomalous features of extreme Meiyu in 2020 over the Yangtze-Huai River Basin and attribution to large-scale circulations. J. Meteor. Res., 35, 799−814, https://doi.org/10.1007/s13351-021-1018-x.
Ordoñez, P., D. Gallego, P. Ribera, C. Peña-Ortiz, and R. García-Herrera, 2016: Tracking the Indian summer monsoon onset back to the preinstrument period. J. Climate, 29, 8115−8127, https://doi.org/10.1175/JCLI-D-15-0788.1.
Pan, X., T. Li, Y. Sun, and Z. W. Zhu, 2021: Cause of extreme heavy and persistent rainfall over Yangtze River in summer 2020. Adv. Atmos. Sci., 38, 1994−2009, https://doi.org/10.1007/s00376-021-0433-3.
Pandey, P., S. Dwivedi, B. N. Goswami, and F. Kucharski, 2020: A new perspective on ENSO-Indian summer monsoon rainfall relationship in a warming environment. Climate Dyn., 55, 3307−3326, https://doi.org/10.1007/s00382-020-05452-7.
Park, H.-L., K.-H. Seo, B.-M. Kim, J.-Y. Kim, and S.-Y. S. Wang, 2021: Dominant wintertime surface air temperature modes in the northern Hemisphere extratropics. Climate Dyn., 56, 687−698, https://doi.org/10.1007/s00382-020-05478-x.
Paul, S., S. Ghosh, R. Oglesby, A. Pathak, A. Chandrasekharan, and R. Ramsankaran, 2016: Weakening of Indian summer monsoon rainfall due to changes in land use land cover. Scientific Reports, 6, 32177, https://doi.org/10.1038/srep32177.
Piao, J. L., W. Chen, K. Wei, Y. Liu, H.-F. Graf, J.-B. Ahn, and A. Pogoreltsev, 2017: An abrupt rainfall decrease over the Asian inland plateau region around 1999 and the possible underlying mechanism. Adv. Atmos. Sci., 34, 456−468, https://doi.org/10.1007/s00376-016-6136-5.
Piao, J. L., W. Chen, S. F. Chen, and K. Wei, 2018a: Intensified impact of North Atlantic oscillation in May on subsequent July Asian Inland Plateau precipitation since the late 1970s. International Journal of Climatology, 38, 2605−2612, https://doi.org/10.1002/joc.5332.
Piao, J. L., W. Chen, Q. Zhang, and P. Hu, 2018b: Comparison of moisture transport between Siberia and Northeast Asia on Annual and Interannual time scales. J. Climate, 31, 7645−7660, https://doi.org/10.1175/JCLI-D-17-0763.1.
Piao, J. L., W. Chen, S. F. Chen, H. N. Gong, and Q. Zhang, 2020: Summer water vapor Sources in Northeast Asia and East Siberia revealed by a moisture-tracing atmospheric model. J. Climate, 33, 3883−3899, https://doi.org/10.1175/JCLI-D-19-0516.1.
Piao, J. L., W. Chen, and S. F. Chen, 2021a: Water vapour transport changes associated with the interdecadal decrease in the summer rainfall over Northeast Asia around the late-1990s. International Journal of Climatology, 41, E1469−E1482, https://doi.org/10.1002/joc.6780.
Piao, J. L., W. Chen, and S. F. Chen, 2021b: Sources of the internal variability-generated uncertainties in the projection of Northeast Asian summer precipitation. Climate Dyn., 56, 1783−1797, https://doi.org/10.1007/s00382-020-05557-z.
Piao, J. L., W. Chen, S. F. Chen, H. N. Gong, and L. Wang, 2021c: Mean states and future projections of precipitation over the monsoon transitional zone in China in CMIP5 and CMIP6 models. Climatic Change, 169, 35, https://doi.org/10.1007/s10584-021-03286-8.
Piao, J. L., W. Chen, L. Wang, and S. F. Chen, 2022: Future projections of precipitation, surface temperatures and drought events over the monsoon transitional zone in China from bias-corrected CMIP6 models. International Journal of Climatology, 42, 1203−1219, https://doi.org/10.1002/joc.7297.
Pottapinjara, V., M. S. Girishkumar, M. Ravichandran, and R. Murtugudde, 2014: Influence of the Atlantic zonal mode on monsoon depressions in the Bay of Bengal during boreal summer. J. Geophys. Res., 119, 6456−6469, https://doi.org/10.1002/2014JD021494.
Pottapinjara, V., M. K. Roxy, M. S. Girishkumar, K. Ashok, S. Joseph, M. Ravichandran, and R. Murtugudde, 2021: Simulation of interannual relationship between the Atlantic zonal mode and Indian summer monsoon in CFSv2. Climate Dyn., 57, 353−373, https://doi.org/10.1007/s00382-021-05712-0.
Preethi, B., M. Mujumdar, A. Prabhu, and R. Kripalani, 2017: Variability and teleconnections of South and East Asian summer monsoons in present and future projections of CMIP5 climate models. Asia-Pacific Journal of Atmospheric Sciences, 53, 305−325, https://doi.org/10.1007/s13143-017-0034-3.
Qiao, S. B., and Coauthors, 2021: The longest 2020 Meiyu season over the past 60 years: Subseasonal perspective and its predictions. Geophys. Res. Lett., 48, e2021GL093596, https://doi.org/10.1029/2021GL093596.
Rajesh, P. V., and B. N. Goswami, 2020: Four-dimensional structure and sub-seasonal regulation of the Indian summer monsoon multi-decadal mode. Climate Dyn., 55, 2645−2666, https://doi.org/10.1007/s00382-020-05407-y.
Ramage, C. S., 1971: Monsoon Meteorology. Academic Press, 296 pp.
Roxy, M. K., 2017: Land warming revives monsoon. Nature Climate Change, 7, 549−550, https://doi.org/10.1038/nclimate3356.
Roxy, M. K., K. Ritika, P. Terray, R. Murtugudde, K. Ashok, and B. N. Goswami, 2015: Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea thermal gradient. Nature Communications, 6, 7423, https://doi.org/10.1038/ncomms8423.
Roy, I., R. G. Tedeschi, and M. Collins, 2019: ENSO teleconnections to the Indian summer monsoon under changing climate. International Journal of Climatology, 39, 3031−3042, https://doi.org/10.1002/joc.5999.
Sabeerali, C. T., R. S. Ajayamohan, H. K. Bangalath, and N. Chen, 2019: Atlantic zonal mode: An emerging source of Indian Summer Monsoon variability in a warming world. Geophys. Res. Lett., 46, 4460−4467, https://doi.org/10.1029/2019GL082379.
Samanta, D., B. Rajagopalan, K. B. Karnauskas, L. Zhang, and N. F. Goodkin, 2020: La Niña's diminishing fingerprint on the Central Indian summer monsoon. Geophys. Res. Lett., 47, e2019GL086237, https://doi.org/10.1029/2019GL086237.
Sandeep, N., P. Swapna, R. Krishnan, R. Farneti, A. G. Prajeesh, D. C. Ayantika, and S. Manmeet, 2020: South Asian monsoon response to weakening of Atlantic meridional overturning circulation in a warming climate. Climate Dyn., 54, 3507−3524, https://doi.org/10.1007/s00382-020-05180-y.
Schulte, J., F. Policelli, and B. Zaitchik, 2021: A continuum approach to understanding changes in the ENSO–Indian monsoon relationship. J. Climate, 34, 1549−1561, https://doi.org/10.1175/JCLI-D-20-0027.1.
Seetha, C. J., H. Varikoden, C. A. Babu, and J. Kuttippurath, 2020: Significant changes in the ENSO-monsoon relationship and associated circulation features on multidecadal timescale. Climate Dyn., 54, 1491−1506, https://doi.org/10.1007/s00382-019-05071-x.
Seok, S.-H., and K.-H. Seo, 2021: Sensitivity of East Asian summer monsoon precipitation to the location of the Tibetan Plateau. J. Climate, 34(22), 8829−8840, https://doi.org/10.1175/JCLI-D-21-0154.1.
Shindell, D. T., R. L. Miller, G. A. Schmidt, and L. Pandolfo, 1999: Simulation of recent northern winter climate trends by greenhouse-gas forcing. Nature, 399, 452−455, https://doi.org/10.1038/20905.
Son, J.-H., K.-H. Seo, and B. Wang, 2019: Dynamical control of the Tibetan Plateau on the East Asian summer monsoon. Geophys. Res. Lett., 46(13), 7672−7679, https://doi.org/10.1029/2019GL083104.
Son, J.-H., K.-H. Seo, and B. Wang, 2020: How does the Tibetan Plateau dynamically affect downstream monsoon precipitation. Geophys. Res. Lett., 47(23), e2020GL090543, https://doi.org/10.1029/2020GL090543.
Song, L., and R. G. Wu, 2017: Processes for occurrence of strong cold events over eastern China. J. Climate, 30, 9247−9266, https://doi.org/10.1175/JCLI-D-16-0857.1.
Song, L., and R. G. Wu, 2018: Comparison of intraseasonal East Asian Winter cold temperature anomalies in positive and negative phases of the arctic oscillation. J. Geophys. Res., 123, 8518−8537, https://doi.org/10.1029/2018JD028343.
Song, L., and R. G. Wu, 2019a: Impacts of MJO convection over the maritime continent on eastern China cold temperatures. J. Climate, 32, 3429−3449, https://doi.org/10.1175/JCLI-D-18-0545.1.
Song, L., and R. G. Wu, 2019b: Different cooperation of the arctic oscillation and the Madden-Julian oscillation in the East Asian cold events during early and late winter. J. Geophys. Res., 124, 4913−4931, https://doi.org/10.1029/2019JD030388.
Song, L., and R. G. Wu, 2019c: Combined effects of the MJO and the arctic oscillation on the intraseasonal eastern China winter temperature variations. J. Climate, 32, 2295−2311, https://doi.org/10.1175/JCLI-D-18-0625.1.
Song, L., and R. G. Wu, 2019d: Precursory signals of East Asian winter cold anomalies in stratospheric planetary wave pattern. Climate Dyn., 52, 5965−5983, https://doi.org/10.1007/s00382-018-4491-x.
Song, L., and R. G. Wu, 2020: Modulation of the QBO on the MJO-related surface air temperature anomalies over Eurasia during boreal winter. Climate Dyn., 54, 2419−2431, https://doi.org/10.1007/s00382-020-05122-8.
Song, L., and R. G. Wu, 2021: Two types of rossby wave breaking events and their influences on East Asian winter temperature. J. Geophys. Res., 126, e2020JD033917, https://doi.org/10.1029/2020JD033917.
Song, L. Y., S. F. Chen, W. Chen, J. P. Guo, C. L. Cheng, and Y. Wang, 2022: Distinct evolutions of haze pollution from winter to the following spring over the North China Plain: Role of the North Atlantic sea surface temperature anomalies. Atmospheric Chemistry and Physics, 22, 1669−1688, https://doi.org/10.5194/acp-22-1669-2022.
Srinivas, G., J. S. Chowdary, Y. Kosaka, C. Gnanaseelan, A. Parekh, and K. V. S. R. Prasad, 2018: Influence of the Pacific–Japan pattern on Indian summer monsoon rainfall. J. Climate, 31, 3943−3958, https://doi.org/10.1175/JCLI-D-17-0408.1.
Srivastava, G., A. Chakraborty, and R. S. Nanjundiah, 2020: Multidecadal variations in ENSO-Indian summer monsoon relationship at sub-seasonal timescales. Theor. Appl. Climatol., 140, 1299−1314, https://doi.org/10.1007/s00704-020-03122-6.
Stephan, C. C., N. P. Klingaman, and A. G. Turner. 2019: A mechanism for the recently increased interdecadal variability of the Silk Road pattern. J. Climate, 32(3), 717−736, https://doi.org/10.1175/JCLI-D-18-0405.1.
Sun, J. H., Y. C. Zhang, R. X. Liu, S. M. Fu, and F. Y. Tian, 2019: A review of research on warm-sector heavy rainfall in China. Adv. Atmos. Sci., 36, 1299−1307, https://doi.org/10.1007/s00376-019-9021-1.
Sun, J. Q., and J. Ming, 2019: Possible mechanism for the weakening relationship between Indian and central East Asian summer rainfall after the late 1970s: Role of the mid-to-high-latitude atmospheric circulation. Meteorol. Atmos. Phys., 131, 517−524, https://doi.org/10.1007/s00703-018-0586-5.
Takaya, Y., I. Ishikawa, C. Kobayashi, H. Endo, and T. Ose, 2020: Enhanced Meiyu‐Baiu rainfall in early summer 2020: Aftermath of the 2019 super IOD event. Geophys. Res. Lett., 47, e2020GL090671, https://doi.org/10.1029/2020GL090671.
Tang, S. L., J.-J. Luo, J. Y. He, J. Y. Wu, Y. Zhou, and W. S. Ying, 2021: Toward understanding the extreme floods over Yangtze River valley in June–July 2020: Role of tropical oceans. Adv. Atmos. Sci., 38, 2023−2039, https://doi.org/10.1007/s00376-021-1036-8.
Tao, S. Y., and L. X. Chen, 1987: A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology, C. P. Chang and T. N. Krishnamurti, Eds., Oxford University Press, 60−92.
Terray, P., K. P. Sooraj, S. Masson, and C. Prodhomme, 2021: Anatomy of the Indian Summer Monsoon and ENSO relationships in state-of-the-art CGCMs: Role of the tropical Indian Ocean. Climate Dyn., 56, 329−356, https://doi.org/10.1007/s00382-020-05484-z.
Tian, B. Q., and K. Fan, 2020: Different prediction skill for the East Asian winter monsoon in the early and late winter season. Climate Dyn., 54, 1523−1538, https://doi.org/10.1007/s00382-019-05068-6.
Torrence, C., and P. J. Webster, 1999: Interdecadal changes in the ENSO-monsoon system. J. Climate, 12, 2679−2690, https://doi.org/10.1175/1520-0442(1999)012<2679:ICITEM>2.0.CO;2.
Ummenhofer, C. C., A. Sen Gupta, Y. Li, A. S. Taschetto, and M. H. England, 2011: Multi-decadal modulation of the El Niño–Indian monsoon relationship by Indian Ocean variability. Environmental Research Letters, 6, 034006, https://doi.org/10.1088/1748-9326/6/3/034006.
Varikoden, H., and V. Revadekar, 2020: On the extreme rainfall events during the southwest monsoon season in Northeast regions of the Indian subcontinent. Meteorological Applications, 27, e1822, https://doi.org/10.1002/met.1822.
Varikoden, H., J. V. Revadekar, J. Kuttippurath, and C. A. Babu, 2019: Contrasting trends in southwest monsoon rainfall over the western Ghats region of India. Climate Dyn., 52, 4557−4566, https://doi.org/10.1007/s00382-018-4397-7.
Varikoden, H., P. P. V. H. Hrudya, R. N. Vishnu, and J. Kuttippurath, 2022: Changes in the ENSO-ISMR relationship in the historical and future projection periods based on coupled models. International Journal of Climatology, 42, 2225−2245, https://doi.org/10.1002/joc.7362.
Vibhute, A., S. Halder, P. Singh, A. Parekh, J. S. Chowdary, and C. Gnanaseelan, 2020: Decadal variability of tropical Indian Ocean sea surface temperature and its impact on the Indian summer monsoon. Theor. Appl. Climatol., 141, 551−566, https://doi.org/10.1007/s00704-020-03216-1.
Vittal, H., G. Villarini, and W. Zhang, 2020: Early prediction of the Indian summer monsoon rainfall by the Atlantic Meridional Mode. Climate Dyn., 54, 2337−2346, https://doi.org/10.1007/s00382-019-05117-0.
Wang, B., and Z. Fan, 1999: Choice of South Asian summer monsoon indices. Bull. Amer. Meteor. Soc., 80, 629−638, https://doi.org/10.1175/1520-0477(1999)080<0629:COSASM>2.0.CO;2.
Wang, B., and Y. Kajikawa, 2015: Reply to “Comments on ‘Interdecadal Change of the South China Sea Summer Monsoon Onset’”. J. Climate, 28, 9036−9039, https://doi.org/10.1175/JCLI-D-15-0173.1.
Wang, B., and LinHo, 2002: Rainy season of the Asian–Pacific summer monsoon. J. Climate, 15, 386−398, https://doi.org/10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2.
Wang, B., F. Huang, Z. W. Wu, J. Yang, X. H. Fu, and K. Kikuchi, 2009a: Multi-scale climate variability of the South China Sea monsoon: A review. Dyn. Atmos. Oceans, 47, 15−37, https://doi.org/10.1016/j.dynatmoce.2008.09.004.
Wang, H. J., J. H. Sun, S. M. Fu, and Y. C. Zhang, 2021a: Typical circulation patterns and associated mechanisms for persistent heavy rainfall events over Yangtze-Huaihe River Valley during 1981-2020. Adv. Atmos. Sci., 38, 2167−2182, https://doi.org/10.1007/s00376-021-1194-8.
Wang, H., S. P. Xie, Y. Kosaka, Q. Y. Liu, and Y. Du, 2019: Dynamics of Asian summer monsoon response to anthropogenic aerosol forcing. J. Climate, 32, 843−858, https://doi.org/10.1175/JCLI-D-18-0386.1.
Wang, L., and W. Chen, 2014: An intensity index for the East Asian winter monsoon. J. Climate, 27, 2361−2374, https://doi.org/10.1175/JCLI-D-13-00086.1.
Wang, L., and M.-M. Lu, 2017: The East Asian winter monsoon. The Global Monsoon System: Research and Forecast. 3rd ed, C. P. Chang et al., Eds., 51−61, https://doi.org/10.1142/9789813200913_0005.
Wang, L., R. H. Huang, L. Gu, W. Chen, and L. H. Kang, 2009b: Interdecadal variations of the East Asian winter monsoon and their association with quasi-stationary planetary wave activity. J. Climate, 22, 4860−4872, https://doi.org/10.1175/2009JCLI2973.1.
Wang, L., W. Chen, G. Huang, and G. Zeng, 2017a: Changes of the transitional climate zone in East Asia: Past and future. Climate Dyn., 49, 1463−1477, https://doi.org/10.1007/s00382-016-3400-4.
Wang, L., P. Q. Xu, W. Chen, and Y. Liu, 2017b: Interdecadal variations of the Silk Road pattern. J. Climate, 30(24), 9915−9932, https://doi.org/10.1175/JCLI-D-17-0340.1.
Wang, L., H. N. Gong, and X. Q. Lan, 2021b: Interdecadal variation of the Arctic Oscillation and its influence on climate. Transactions of Atmospheric Sciences, 44, 50−60, https://doi.org/10.13878/j.cnki.dqkxxb.20201030001. (in Chinese with English abstract
Wang, L., P. Q. Xu, and J. S. Chowdary, 2021c: Teleconnection along the Asian Jet stream and its association with the Asian summer monsoon. Indian Summer Monsoon Variability: El Niño-Teleconnections and Beyond, J. Chowdary et al., Eds., Elsevier, 287−298, https://doi.org/10.1016/B978-0-12-822402-1.00009-0.
Wang, L., C. Zheng, and Y. Y. Liu, 2021d: Understanding the East Asian winter monsoon in 2018 from the intraseasonal perspective. Climate Dynamics, 57, 2053−2062, https://doi.org/10.1007/s00382-021-05793-x.
Wang, Q. L., L. Wang, G. Huang, J. L. Piao, and C. Chotamonsak, 2021e: Temporal and spatial variation of the transitional climate zone in summer during 1961−2018. International Journal of Climatology, 41, 1633−1648, https://doi.org/10.1002/joc.6902.
Wang, Q. L., G. Huang, L. Wang, J. L. Piao, T. J. Ma, P. Hu, C. Chotamonsak, and A. Limsakul, 2023: Mechanism of the summer rainfall variation in Transitional Climate Zone in East Asia from the perspective of moisture supply during 1979−2010 based on the Lagrangian method. Climate Dyn., 60, 1225−1238, https://doi.org/10.1007/s00382-022-06344-8.
Wang, S., and W. Chen, 2022: Impact of internal variability on recent opposite trends in wintertime temperature over the Barents–Kara Seas and central Eurasia. Climate Dyn., 58, 2941−2956, https://doi.org/10.1007/s00382-021-06077-0.
Wang, S., D. Nath, W. Chen, and T. J. Ma, 2020: CMIP5 model simulations of warm Arctic-cold Eurasia pattern in winter surface air temperature anomalies. Climate Dyn., 54, 4499−4513, https://doi.org/10.1007/s00382-020-05241-2.
Wang, Y. M., S. L. Li, and D. H. Luo, 2009c: Seasonal response of Asian monsoonal climate to the Atlantic Multidecadal Oscillation. J. Geophys. Res., 114, D02112, https://doi.org/10.1029/2008JD010929.
Wang, Z. B., R. G.Wu, S.-F. Chen, G. Huang, G. Liu, and L.-H. Zhu, 2018: Influence of western Tibetan Plateau summer snow cover on East Asian summer rainfall. J. Geophys. Res., 123(5), 2371−2386, https://doi.org/10.1002/2017JD028016.
Wei, K., C. J. Ouyang, H. T. Duan, Y. L. Li, M. X. Chen, J. Ma, H. C. An, and S. Zhou, 2020a: Reflections on the catastrophic 2020 Yangtze River basin flooding in southern China. The Innovation, 1, 100038, https://doi.org/10.1016/j.xinn.2020.100038.
Wei, W., L. Wang, Q. L. Chen, and Y. Y. Liu, 2014a: Interannual variations of early and late winter temperatures in China and Their Linkage. Chinese Journal of Atmospheric Sciences, 38, 524−536, https://doi.org/10.3878/j.issn.1006-9895.1401.13320. (in Chinese with English abstract
Wei, W., L. Wang, Q. L. Chen, Y. Y. Liu, and Z. Li, 2020b: Definition of Early and Late winter and associated interannual variations of surface air temperature in China. Chinese Journal of Atmospheric Sciences, 44, 122−137, https://doi.org/10.3878/j.issn.1006-9895.1904.18238. (in Chinese with English abstract
Wei, W., R. H. Zhang, M. Wen, X. Y. Rong, and T. Li, 2014b: Impact of Indian summer monsoon on the South Asian High and its influence on summer rainfall over China. Climate Dyn., 43, 1257−1269, https://doi.org/10.1007/s00382-013-1938-y.
Wei, W., R. H. Zhang, M. Wen, B.-J. Kim, and J.-C. Nam, 2015: Interannual variation of the South Asian high and its relation with Indian and East Asian summer monsoon rainfall. J. Climate, 28, 2623−2634, https://doi.org/10.1175/JCLI-D-14-00454.1.
Wei, W., R. H. Zhang, S. Yang, W. H. Li, and M. Wen, 2019: Quasi-biweekly oscillation of the South Asian high and its role in connecting the Indian and East Asian summer rainfalls. Geophys. Res. Lett., 46, 14 742−14 750, https://doi.org/10.1029/2019GL086180.
Woo, S., G. P. Singh, J.-H. Oh, and K.-M. Lee, 2019: Possible teleconnections between East and South Asian summer monsoon precipitation in projected future climate change. Meteorol. Atmos. Phys., 131, 375−387, https://doi.org/10.1007/s00703-017-0573-2.
Wu, G. X., and Coauthors, 2007: The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate. Journal of Hydrometeorology, 8(4), 770−789, https://doi.org/10.1175/JHM609.1.
Wu, N. G., X. Ding, Z. P. Wen, G. X. Chen, Z. Y. Meng, L. X. Lin, and J. Z. Min, 2020: Contrasting frontal and warm-sector heavy rainfalls over South China during the early-summer rainy season. Atmos. Res., 235, 104693, https://doi.org/10.1016/j.atmosres.2019.104693.
Wu, R., and Y. Jiao, 2017: The impacts of the Indian summer rainfall on North China summer rainfall. Asia-Pacific Journal of Atmospheric Sciences, 53, 195−206, https://doi.org/10.1007/s13143-017-0013-8.
Wu, R. G., 2017: Relationship between Indian and East Asian summer rainfall variations. Adv. Atmos. Sci., 34, 4−15, https://doi.org/10.1007/s00376-016-6216-6.
Wu, R. G., K. M. Hu, and Z. D. Lin, 2018: Perspectives on the non-stationarity of the relationship between Indian and East Asian summer rainfall variations. Atmos. Ocean. Sci. Lett., 11, 104−111, https://doi.org/10.1080/16742834.2018.1387758.
Wu, X. F., and J. Y. Mao, 2019: Decadal Changes in interannual dependence of the bay of Bengal summer monsoon onset on ENSO modulated by the pacific decadal oscillation. Adv. Atmos. Sci., 36, 1404−1416, https://doi.org/10.1007/s00376-019-9043-8.
Wu, Z. H., and N. E. Huang, 2009: Ensemble empirical mode decomposition: A noise-assisted data analysis method. Advances in Adaptive Data Analysis, 1, 1−41, https://doi.org/10.1142/S1793536909000047.
Xia, R. D., Y. L. Luo, D.-L. Zhang, M. X. Li, X. H. Bao, and J. S. Sun, 2021: On the diurnal cycle of heavy rainfall over the Sichuan basin during 10-18 August 2020. Adv. Atmos. Sci., 38, 2183−2200, https://doi.org/10.1007/s00376-021-1118-7.
Xiang, B. Q., and B. Wang, 2013: Mechanisms for the advanced Asian summer monsoon onset since the mid-to-late 1990s. J. Climate, 26, 1993−2009, https://doi.org/10.1175/JCLI-D-12-00445.1.
Xiao, X., W. Chen, G. Z. Fan, and D. W. Zhou, 2016: Possible external forcing factors for the interdecadal change in the East Asian winter monsoon around the late 1990s. Climatic and Environmental Research, 21, 197−209, https://doi.org/10.3878/j.issn.1006-9585.2015.15169. (in Chinese with English abstract
Xiao, Z. X., and A. M. Duan, 2016: Impacts of Tibetan Plateau snow cover on the interannual variability of the East Asian summer monsoon. J. Climate, 29(23), 8495−8514, https://doi.org/10.1175/JCLI-D-16-0029.1.
Xing, N., J. P. Li, and L. N. Wang, 2016: Effect of the early and late onset of summer monsoon over the Bay of Bengal on Asian precipitation in May. Climate Dyn., 47, 1961−1970, https://doi.org/10.1007/s00382-015-2944-z.
Xu, L., and Z.-L. Li, 2021: Impacts of the wave train along the Asian Jet on the South China Sea summer monsoon onset. Atmosphere, 12, 1227, https://doi.org/10.3390/atmos12091227.
Xu, M., H. M. Xu, J. Ma, and J. C. Deng, 2022: Impact of Pacific Decadal Oscillation on interannual relationship between El Niño and South China Sea summer monsoon onset. International Journal of Climatology, 42, 2739−2753, https://doi.org/10.1002/joc.7388.
Xu, P. Q., L. Wang, W. Chen, J. Feng, and Y. Y. Liu, 2019: Structural changes in the Pacific–Japan pattern in the late 1990s. J. Climate, 32, 607−621, https://doi.org/10.1175/JCLI-D-18-0123.1.
Xue, X., and W. Chen, 2019: Distinguishing interannual variations and possible impacted factors for the northern and southern mode of South Asia High. Climate Dyn., 53, 4937−4959, https://doi.org/10.1007/s00382-019-04837-7.
Xue, X., W. Chen, S. F. Chen, and D. W. Zhou, 2015: Modulation of the connection between boreal winter ENSO and the South Asian high in the following summer by the stratospheric quasi-biennial oscillation. J. Geophys. Res., 120, 7393−7411, https://doi.org/10.1002/2015JD023260.
Xue, X., W. Chen, S. F. Chen, S. S. Sun, and S. S. Hou, 2021: Distinct impacts of two types of South Asian highs on East Asian summer rainfall. International Journal of Climatology, 41(S1), E2718−E2740, https://doi.org/10.1002/joc.6876.
Xue, X., W. Chen, and S. F. Chen, 2022: Distinct impacts of two types of South Asian high on the connection of the summer rainfall over India and North China. International Journal of Climatology, 42, 8056−8072, https://doi.org/10.1002/joc.7692.
Yang, L. N., and B. Y. Wu, 2013: Interdecadal variations of the East Asian winter surface air temperature and possible causes. Chinese Science Bulletin, 58, 3969−3977, https://doi.org/10.1007/s11434-013-5911-2.
Yang, S., R. G. Wu, M. Q. Jian, J. Huang, X. M. Hu, Z. Q. Wang, and X. W. Jiang, 2021: Climate Change in Southeast Asia and Surrounding Areas. Springer, https://doi.org/10.1007/978-981-15-8225-7.
Yang, X.-Y., X. J. Yuan, and M. F. Ting, 2016: Dynamical link between the Barents–Kara Sea Ice and the Arctic oscillation. J. Climate, 29, 5103−5122, https://doi.org/10.1175/JCLI-D-15-0669.1.
Yang, Y., and Coauthors, 2022: Abrupt emissions reductions during COVID-19 contributed to record summer rainfall in China. Nature Communications, 13, 959, https://doi.org/10.1038/s41467-022-28537-9.
Yasunari, T., A. Kitoh, and T. Tokioka, 1991: Local and remote responses to excessive snow mass over Eurasia appearing in the northern spring and summer climate-A study with the MRI·GCM. J. Meteor. Soc. Japan, 69(4), 473−487, https://doi.org/10.2151/jmsj1965.69.4_473.
You, J. L., M. Q. Jian, S. Gao, and J. J. Cai, 2021: Interdecadal change of the winter-spring tropospheric temperature over Asia and its impact on the South China Sea summer monsoon onset. Frontiers in Earth Science, 8, 599447, https://doi.org/10.3389/feart.2020.599447.
Yu, R., Z. H. Jiang, and H. Y. Ma, 2016: A numerical study on the impact of urban land-use change over eastern China on the onset of the South China Sea monsoon. Chinese Journal of Atmospheric Sciences, 40, 504−514, https://doi.org/10.3878/j.issn.1006-9895.1504.15116. (in Chinese with English abstract
Yu, T. T., J. Feng, and W. Chen, 2020: Evaluation of CMIP5 models in simulating the respective impacts of East Asian winter monsoon and ENSO on the western North Pacific anomalous anticyclone. International Journal of Climatology, 40, 805−821, https://doi.org/10.1002/joc.6240.
Yu, T. T., W. Chen, J. Feng, K. M. Hu, L. Song, and P. Hu, 2021: Roles of ENSO in the link of the East Asian summer monsoon to the ensuing winter monsoon. J. Geophys. Res., 126, e2020JD033994, https://doi.org/10.1029/2020JD033994.
Yuan, F., and W. Chen, 2013: Roles of the tropical convective activities over different regions in the earlier onset of the South China Sea summer monsoon after 1993. Theor. Appl. Climatol., 113, 175−185, https://doi.org/10.1007/s00704-012-0776-x.
Yuan, F., W. Chen, and W. Zhou, 2012: Analysis of the role played by circulation in the persistent precipitation over South China in June 2010. Adv. Atmos. Sci., 29, 769−781, https://doi.org/10.1007/s00376-012-2018-7.
Yun, K. S., and A. Timmermann, 2018: Decadal monsoon-ENSO relationships reexamined. Geophys. Res. Lett., 45, 2014−2021, https://doi.org/10.1002/2017GL076912.
Zeng, W. X., G. X. Chen, L. Q. Bai, Q. Liu, and Z. P. Wen, 2022: Multiscale processes of heavy rainfall over East Asia in summer 2020: Diurnal cycle in response to synoptic disturbances. Mon. Wea. Rev., 150, 1355−1376, https://doi.org/10.1175/MWR-D-21-0308.1.
Zeng, Z. J., Y. Y. Guo, and Z. P. Wen, 2021: Interdecadal change in the relationship between the bay of Bengal summer monsoon and South China Sea summer monsoon onset. Frontiers in Earth Science, 8, 610982, https://doi.org/10.3389/feart.2020.610982.
Zhang, R., and T. L. Delworth, 2006: Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys. Res. Lett., 33, L17712, https://doi.org/10.1029/2006GL026267.
Zhang, R. H., A. Sumi, and M. Kimoto, 1996: Impact of El Nino on the East Asian monsoon: A diagnostic study of the '86/87 and '91/92 events. J. Meteor. Soc. Japan, 74, 49−62, https://doi.org/10.2151/jmsj1965.74.1_49.
Zhang, R. H., Q. Y. Min, and J. Z. Su, 2017: Impact of El Niño on atmospheric circulations over East Asia and rainfall in China: Role of the anomalous western North Pacific anticyclone. Science China Earth Sciences, 60, 1124−1132, https://doi.org/10.1007/s11430-016-9026-x.
Zhang, W. J., Z. C. Huang, F. Jiang, M. F. Stuecker, G. S. Chen, and F. F. Jin, 2021: Exceptionally persistent Madden‐Julian Oscillation activity contributes to the extreme 2020 East Asian summer monsoon rainfall. Geophys. Res. Lett., 48, e2020GL091588, https://doi.org/10.1029/2020GL091588.
Zhao, W., W. Chen, S. F. Chen, S. L. Yao, and D. Nath, 2019a: Inter‐annual variations of precipitation over the monsoon transitional zone in China during August–September: Role of sea surface temperature anomalies over the tropical Pacific and North Atlantic. Atmos. Sci. Lett., 20, e872, https://doi.org/10.1002/asl.872.
Zhao, W., S. F. Chen, W. Chen, S. L. Yao, D. Nath, and B. Yu, 2019b: Interannual variations of the rainy season withdrawal of the monsoon transitional zone in China. Climate Dyn., 53, 2031−2046, https://doi.org/10.1007/s00382-019-04762-9.
Zhao, W., W. Chen, S. F. Chen, D. Nath, and L. Wang, 2020a: Interdecadal change in the impact of North Atlantic SST on August rainfall over the monsoon transitional belt in China around the late 1990s. Theor. Appl. Climatol., 140, 503−516, https://doi.org/10.1007/s00704-020-03102-w.
Zhao, W., W. Chen, S. F. Chen, S. L. Yao, and D. Nath, 2020b: Combined impact of tropical central‐eastern Pacific and North Atlantic sea surface temperature on precipitation variation in monsoon transitional zone over China during August–September. International Journal of Climatology, 40, 1316−1327, https://doi.org/10.1002/joc.6231.
Zhao, W., W. Chen, S. F. Chen, H. N. Gong, and T. J. Ma, 2021: Roles of anthropogenic forcings in the observed trend of decreasing late-summer precipitation over the East Asian transitional climate zone. Scientific Reports, 11, 4935, https://doi.org/10.1038/S41598-021-84470-9.
Zhao, W., and Coauthors, 2022a: Distinct Impacts of ENSO on Haze pollution in the Beijing–Tianjin–Hebei region between early and late winters. J. Climate, 35, 687−704, https://doi.org/10.1175/JCLI-D-21-0459.1.
Zhao, Y. H., J. B. Cheng, G. L. Feng, R. Zhi, Z. H. Zheng, and Z. P. Zhang, 2022b: Analysis of the atmospheric direct dynamic source for the westerly extended WPSH and record-breaking Plum Rain in 2020. Climate Dyn., 59, 1233−1251, https://doi.org/10.1007/s00382-022-06186-4.
Zheng, F., and Coauthors, 2022: The 2020/21 Extremely cold winter in China influenced by the synergistic effect of La Niña and Warm Arctic. Adv. Atmos. Sci., 39, 546−552, https://doi.org/10.1007/s00376-021-1033-y.
Zheng, J. Y., and C. Z. Wang, 2021: Influences of three oceans on record-breaking rainfall over the Yangtze River Valley in June 2020. Science China Earth Sciences, 64, 1607−1618, https://doi.org/10.1007/s11430-020-9758-9.
Zhong, W. G., and Z. W. Wu, 2022: Subseasonal variations of Eurasian wintertime surface air temperature: Two distinct leading modes. Climate Dyn., 59, 85−108, https://doi.org/10.1007/s00382-021-06118-8.
Zhou, F. L., R. H. Zhang, and J. P. Han, 2020: Influences of the East Asian summer rainfall on circumglobal teleconnection. J. Climate, 33, 5213−5221, https://doi.org/10.1175/JCLI-D-19-0325.1.
Zhou, W., J. C. L. Chan, W. Chen, J. Ling, J. G. Pinto, and Y. P. Shao, 2009: Synoptic-scale controls of persistent low temperature and icy weather over southern China in January 2008. Mon. Wea. Rev., 137, 3978−3991, https://doi.org/10.1175/2009MWR2952.1.
Zhou, Z.-Q., S.-P. Xie, and R. Zhang, 2021: Historic Yangtze flooding of 2020 tied to extreme Indian Ocean conditions. Proceedings of the National Academy of Sciences of the United States of America, 118, e2022255118, https://doi.org/10.1073/pnas.2022255118.
Zhu, Z. W., and T. Li, 2017: Empirical prediction of the onset dates of South China Sea summer monsoon. Climate Dyn., 48, 1633−1645, https://doi.org/10.1007/s00382-016-3164-x.