Bilbao, R. A. F., J. M. Gregory, and N. Bouttes, 2015: Analysis of the regional pattern of sea level change due to ocean dynamics and density change for 1993−2099 in observations and CMIP5 AOGCMs. Climate Dyn., 45, 2647−2666, https://doi.org/10.1007/s00382-015-2499-z.
Bordbar, M. H., T. Martin, M. Latif, and W. Park, 2015: Effects of long-term variability on projections of twenty-first century dynamic sea level. Nature Climate Change, 5, 343−347, https://doi.org/10.1038/nclimate2569.
Bouttes, N., and J. M. Gregory, 2014: Attribution of the spatial pattern of CO2-forced sea level change to ocean surface flux changes. Environmental Research Letters, 9, 034004, https://doi.org/10.1088/1748-9326/9/3/034004.
Carson, M., A. Köhl, and D. Stammer, 2015: The impact of regional multidecadal and century-scale internal climate variability on sea level trends in CMIP5 models. J. Climate, 28, 853−861, https://doi.org/10.1175/JCLI-D-14-00359.1.
Carson, M., A. Köhl, D. Stammer, A. B. A. Slangen, C. A. Katsman, R. S. W. van de Wal, J. Church, and N. White, 2016: Coastal sea level changes, observed and projected during the 20th and 21st century. Climatic Change, 134, 269−281, https://doi.org/10.1007/s10584-015-1520-1.
Carson, M., K. Lyu, K. Richter, M. Becker, C. M. Domingues, W. Q. Han, and L. Zanna, 2019: Climate model uncertainty and trend detection in regional sea level projections: A review. Surveys in Geophysics, 40, 1631−1653, https://doi.org/10.1007/s10712-019-09559-3.
Cazenave, A., and F. Remy, 2011: Sea level and climate: Measurements and causes of changes. Wiley Interdisciplinary Reviews: Climate Change, 2, 647−662, https://doi.org/10.1002/wcc.139.
Church, J. A., and Coauthors, 2013: Sea level change. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds., Cambridge University Press, https://doi.org/10.1017/CB09781107415315.026
Clark, P. U., J. A. Church, J. M. Gregory, and A. J. Payne, 2015: Recent progress in understanding and projecting regional and global mean sea level change. Current Climate Change Reports, 1, 224−246, https://doi.org/10.1007/s40641-015-0024-4.
Deser, C., and Coauthors, 2020: Insights from Earth system model initial-condition large ensembles and future prospects. Nature Climate Change, 10, 277−286, https://doi.org/10.1038/s41558-020-0731-2.
Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9, 1937−1958, https://doi.org/10.5194/gmd-9-1937-2016.
Forget, G., and R. M. Ponte, 2015: The partition of regional sea level variability. Progress in Oceanography, 137, 173−195, https://doi.org/10.1016/j.pocean.2015.06.002.
Gregory, J. M., and Coauthors, 2013: Twentieth-century global-mean sea level rise: Is the whole greater than the sum of the parts? J. Climate, 26, 4476−4499, https://doi.org/10.1175/JCLI-D-12-00319.1.
Gregory, J. M., and Coauthors, 2019: Concepts and terminology for sea level: Mean, variability and change, both local and global. Surveys in Geophysics, 40, 1251−1289, https://doi.org/10.1007/s10712-019-09525-z.
Griffies, S. M., and R. J. Greatbatch, 2012: Physical processes that impact the evolution of global mean sea level in ocean climate models. Ocean Modelling, 51, 37−72, https://doi.org/10.1016/j.ocemod.2012.04.003.
Gupta, A. S., N. C. Jourdain, J. N. Brown, and D. Monselesan, 2013: Climate drift in the CMIP5 models. J. Climate, 26, 8597−8615, https://doi.org/10.1175/JCLI-D-12-00521.1.
Hajima, T., and Coauthors, 2019: Description of the MIROC-ES2L Earth system model and evaluation of its climate-biogeochemical processes and feedbacks. Geoscientific Model Development Discussions, https://doi.org/10.5194/gmd-2019-275.
Hu, A. X., and C. Deser, 2013: Uncertainty in future regional sea level rise due to internal climate variability. Geophys. Res. Lett., 40, 2768−2772, https://doi.org/10.1002/grl.50531.
Hu, A. X., and S. C. Bates, 2018: Internal climate variability and projected future regional steric and dynamic sea level rise. Nature Communications, 9, 1068, https://doi.org/10.1038/s41467-018-03474-8.
Hyder, P., and Coauthors, 2018: Critical Southern Ocean climate model biases traced to atmospheric model cloud errors. Nature Communications, 9, 3625, https://doi.org/10.1038/s41467-018-05634-2.
Kelley, M., and Coauthors, 2020: GISS-E2.1: Configurations and climatology. Journal of Advances in Modeling Earth Systems, 12, e2019MS002025, https://doi.org/10.1029/2019MS002025.
Kiss, A. E., and Coauthors, 2020: ACCESS-OM2 v1.0: A global ocean-sea ice model at three resolutions. Geoscientific Model Development, 13, 401−442, https://doi.org/10.5194/gmd-13-401-2020.
Landerer, F. W., P. J. Gleckler, and T. Lee, 2014: Evaluation of CMIP5 dynamic sea surface height multi-model simulations against satellite observations. Climate Dyn., 43, 1271−1283, https://doi.org/10.1007/s00382-013-1939-x.
Lauritzen, P. H., and Coauthors, 2018: NCAR release of CAM-SE in CESM2.0: A reformulation of the spectral element dynamical core in dry-mass vertical coordinates with comprehensive treatment of condensates and energy. Journal of Advances in Modeling Earth Systems, 10, 1537−1570, https://doi.org/10.1029/2017MS001257.
Lehner, F., C. Deser, N. Maher, J. Marotzke, E. Fischer, L. Brunner, R. Knutti, and E. Hawkins, 2020: Partitioning climate projection uncertainty with multiple Large Ensembles and CMIP5/6. Earth System Dynamics Discussions, https://doi.org/10.5194/esd-2019-93.
Li, L. J., and Coauthors, 2020: The flexible global ocean-atmosphere-land system model grid-point version 3 (FGOALS-g3): Description and evaluation. Journal of Advances in Modeling Earth Systems, 12, e2019MS002012, https://doi.org/10.1029/2019MS002012.
Little, C. M., R. M. Horton, R. E. Kopp, M. Oppenheimer, and S. Yip, 2015: Uncertainty in twenty-first-century CMIP5 sea level projections. J. Climate, 28, 838−852, https://doi.org/10.1175/JCLI-D-14-00453.1.
Liu, H. L., and Coauthors, 2018: Development and validation of the whole atmosphere community climate model with thermosphere and ionosphere extension (WACCM-X 2.0). Journal of Advances in Modeling Earth Systems, 10, 381−402, https://doi.org/10.1002/2017MS001232.
Lurton, T., and Coauthors, 2020: Implementation of the CMIP6 forcing data in the IPSL-CM6A-LR model. Journal of Advances in Modeling Earth Systems, 12, e2019MS001940, https://doi.org/10.1029/2019MS001940.
Lyu, K., X. B. Zhang, J. A. Church, A. B. A. Slangen, and J. Y. Hu, 2014: Time of emergence for regional sea-level change. Nature Climate Change, 4, 4006−1010, https://doi.org/10.1038/nclimate2397.
Lyu, K., X. B. Zhang, and J. A. Church, 2020: Regional dynamic sea level simulated in the CMIP5 and CMIP6 models: Mean biases, future projections, and their linkages. J. Climate, 33, 6377−6398, https://doi.org/10.1175/JCLI-D-19-1029.1.
Marcos, M., and A. Amores, 2014: Quantifying anthropogenic and natural contributions to thermosteric sea level rise. Geophys. Res. Lett., 41, 2502−2507, https://doi.org/10.1002/2014GL059766.
Marcos, M., B. Marzeion, S. Dangendorf, A. B. A. Slangen, H. Palanisamy, and L. Fenoglio-Marc, 2017: Internal variability versus anthropogenic forcing on sea level and its components. Integrative Study of the Mean Sea level and Its Components. A. Cazenave et al., Eds., Springer, 337−356, https://doi.org/10.1007/978-3-319-56490-6_15.
Mauritsen, T., and Coauthors, 2019: Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and its response to increasing CO2. Journal of Advances in Modeling Earth Systems, 11, 998−1038, https://doi.org/10.1029/2018MS001400.
Meijers, A. J. S., 2014: The southern ocean in the coupled model intercomparison project phase 5. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372, 20130296, https://doi.org/10.1098/rsta.2013.0296.
Meyssignac, B., and Coauthors, 2017: Evaluating model simulations of twentieth-century sea-level rise. Part II: Regional sea-level changes. J. Climate, 30, 8565−8593, https://doi.org/10.1175/JCLI-D-17-0112.1.
Müller, W. A., and Coauthors, 2018: A higher-resolution version of the max Planck institute earth system model (MPI-ESM1.2-HR). Journal of Advances in Modeling Earth Systems, 10, 1383−1413, https://doi.org/10.1029/2017MS001217.
O’Neill, B. C., and Coauthors, 2016: The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 9, 3461−3482, https://doi.org/10.5194/gmd-9-3461-2016.
Pardaens, A. K., J. M. Gregory, and J. A. Lowe, 2011: A model study of factors influencing projected changes in regional sea level over the twenty-first century. Climate Dyn., 36, 2015−2033, https://doi.org/10.1007/s00382-009-0738-x.
Riahi, K., and Coauthors, 2017: The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change, 42, 153−168, https://doi.org/10.1016/j.gloenvcha.2016.05.009.
Richter, K., R. E. M. Riva, and H. Drange, 2013: Impact of self-attraction and loading effects induced by shelf mass loading on projected regional sea level rise. Geophysical Research Letters, 40, 1144−1148, https://doi.org/10.1002/grl.50265.
Roberts, M. J., and Coauthors, 2019: Description of the resolution hierarchy of the global coupled HadGEM3-GC3.1 model as used in CMIP6 HighResMIP experiments. Geoscientific Model Development, 12, 4999−5028, https://doi.org/10.5194/gmd-12-4999-2019.
Rong, X. Y., and Coauthors, 2018: The CAMS climate system model and a basic evaluation of its climatology and climate variability simulation. Journal of Meteorological Research, 32, 839−861, https://doi.org/10.1007/s13351-018-8058-x.
Sallée, J. B., E. Shuckburgh, N. Bruneau, A. J. S. Meijers, T. J. Bracegirdle, Z. Wang, and T. Roy, 2013: Assessment of Southern Ocean water mass circulation and characteristics in CMIP5 models: Historical bias and forcing response. J. Geophys. Res., 118, 1830−1844, https://doi.org/10.1002/jgrc.20135.
Séférian, R., and Coauthors, 2019: Evaluation of CNRM earth system model, CNRM-ESM2-1: Role of earth system processes in present-day and future climate. Journal of Advances in Modeling Earth Systems, 11, 4182−4227, https://doi.org/10.1029/2019MS001791.
Seland, Ø., and Coauthors, 2020: The Norwegian earth system model, NorESM2 - evaluation of the CMIP6 DECK and historical simulations. Geoscientific Model Development Discussions, https://doi.org/10.5194/gmd-2019-378.
Sellar, A. A., and Coauthors, 2019: UKESM1: Description and evaluation of the U.K. Earth system model. Journal of Advances in Modeling Earth Systems, 11, 4513−4558, https://doi.org/10.1029/2019MS001739.
Slangen, A. B. A., J. A. Church, X. B. Zhang, and D. Monselesan, 2014: Detection and attribution of global mean thermosteric sea level change. Geophys. Res. Lett., 41, 5951−5959, https://doi.org/10.1002/2014GL061356.
Slangen, A. B. A., J. A. Church, X. B. Zhang, and D. P. Monselesan, 2015: The sea-level response to external forcings in historical simulations of CMIP5 climate models. J. Climate, 28, 8521−8539, https://doi.org/10.1175/JCLI-D-15-0376.1.
Slangen, A. B. A., F. Adloff, S. Jevrejeva, P. W. Leclercq, B. Marzeion, Y. Wada, and R. Winkelmann, 2017: A review of recent updates of sea-level projections at global and regional scales. Surveys in Geophysics, 38, 385−406, https://doi.org/10.1007/s10712-016-9374-2.
Stott, P. A., N. P. Gillett, G. C. Hegerl, D. J. Karoly, D. A. Stone, X. B. Zhang, and F. Zwiers, 2010: Detection and attribution of climate change: A regional perspective. Wiley Interdisciplinary Reviews: Climate Change, 1, 192−211, https://doi.org/10.1002/wcc.34.
Swart, N. C., and and Coauthors, 2019: The Canadian earth system model version 5 (CanESM5.0.3). Geoscientific Model Development Discussions, https://doi.org/10.5194/gmd-2019-177.
Tatebe, H., and Coauthors, 2019: Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geoscientific Model Development, 12, 2727−2765, https://doi.org/10.5194/gmd-12-2727-2019.
van Vuuren, D. P., and Coauthors, 2011: The representative concentration pathways: An overview. Climatic Change, 109, 5, https://doi.org/10.1007/s10584-011-0148-z.
Visser, H., S. Dangendorf, and A. C. Petersen, 2015: A review of trend models applied to sea-level data with reference to the “acceleration-deceleration debate”. J. Geophys. Res., 120, 3873−3895, https://doi.org/10.1002/2015JC010716.
Voldoire, A., and Coauthors, 2019: Evaluation of CMIP6 DECK experiments with CNRM-CM6-1. Journal of Advances in Modeling Earth Systems, 11, 2177−2213, https://doi.org/10.1029/2019MS001683.
Volodin, E., and Coauthors, 2019a. INM INM-CM4-8 model output prepared for CMIP6 CMIP. Version 20190603, Earth System Grid Federation, https://doi.org/https://doi.org/10.22033/ESGF/CMIP6.1422.
Volodin, E., and Coauthors, 2019b. INM INM-CM5-0 model output prepared for CMIP6 CMIP. Version 20190619, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.1423.
Wu, T. W., and Coauthors, 2019: The Beijing climate center climate system model (BCC-CSM): The main progress from CMIP5 to CMIP6. Geoscientific Model Development, 12, 1573−1600, https://doi.org/10.5194/gmd-12-1573-2019.
Wyser, K., T. van Noije, S. T. Yang, J. von Hardenberg, D. O’Donnell, and R. Döscher, 2019: On the increased climate sensitivity in the EC-Earth model from CMIP5 to CMIP6. Geoscientific Model Development Discussions, https://doi.org/10.5194/gmd-2019-282.
Yin, J. J., M. E. Schlesinger, and R. J. Stouffer, 2009: Model projections of rapid sea-level rise on the northeast coast of the United States. Nature Geoscience, 2, 262−266, https://doi.org/10.1038/ngeo462.
Yin, J. J., S. M. Griffies, and R. J. Stouffer, 2010: Spatial variability of sea level rise in twenty-first century projections. J. Climate, 23, 4585−4607, https://doi.org/10.1175/2010JCLI3533.1.
Yin, J. Y., 2012: Century to multi-century sea level rise projections from CMIP5 models. Geophys. Res. Lett., 39, L17709, https://doi.org/10.1029/2012GL052947.
Yukimoto, S., and Coauthors, 2019: The meteorological research institute Earth system model version 2.0, MRI-ESM2.0: Description and basic evaluation of the physical component. J. Meteor. Soc. Japan, 97, 931−965, https://doi.org/10.2151/jmsj.2019-051.
Ziehn, T., and Coauthors, 2020: The Australian earth system model: ACCESS-ESM1.5. Journal of Southern Hemisphere Earth Systems Science, https://doi.org/10.1071/ES19035.