Adler, R. F., and Coauthors, 2018: The Global Precipitation Climatology Project (GPCP) monthly analysis (new version 2.3) and a review of 2017 global precipitation. Atmosphere, 9, 138, https://doi.org/10.3390/atmos9040138.
Ashok, K., S. K. Behera, S. A. Rao, H. Y. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, https://doi.org/10.1029/2006JC003798.
Bellenger, H., E. Guilyardi, J. Leloup, M. Lengaigne, and J. Vialard, 2014: ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dyn., 42, 1999−2018, https://doi.org/10.1007/s00382-013-1783-z.
Cai, W. J., and Coauthors, 2019: Pantropical climate interactions. Science, 363, eaav4236, https://doi.org/10.1126/science.aav4236.
Capotondi, A., 2013: ENSO diversity in the NCAR CCSM4 climate model. J. Geophys. Res., 118, 4755−4770, https://doi.org/10.1002/jgrc.20335.
Capotondi, A., and Coauthors, 2015a: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921−938, https://doi.org/10.1175/BAMS-D-13-00117.1.
Capotondi, A., Y.-G. Ham, A. Wittenberg, and J.-S. Kug, 2015b: Climate model biases and El Niño Southern Oscillation (ENSO) simulation. US CLIVAR Variations, 13, 21−25.
Capotondi, A., A. T. Wittenberg, J.-S. Kug, K. Takahashi, and M. J. McPhaden, 2020: ENSO diversity. El Niño Southern Oscillation in A Changing Climate, M. J. McPhaden et al., Eds., American Geophysical Union, 65−86, https://doi.org/10.1002/9781119548164.ch4.
Chang, P., L. Zhang, R. Saravanan, D. J. Vimont, J. C. H. Chiang, L. Ji, H. Seidel, and M. K. Tippett, 2007: Pacific meridional mode and El Niño–Southern Oscillation. Geophys. Res. Lett., 34, L16608, https://doi.org/10.1029/2007GL 030302.
Chen, D. K., and Coauthors, 2015: Strong influence of westerly wind bursts on El Niño diversity. Nature Geoscience, 8, 339−345, https://doi.org/10.1038/ngeo2399.
Chen, G. H., and C.-Y. Tam, 2010: Different impacts of two kinds of Pacific Ocean warming on tropical cyclone frequency over the western North Pacific. Geophys. Res. Lett., 37, L01803, https://doi.org/10.1029/2009GL041708.
Choi, J., S.-I. An, J.-S. Kug, and S.-W. Yeh, 2011: The role of mean state on changes in El Niño’s flavor. Climate Dyn., 37, 1205−1215, https://doi.org/10.1007/s00382-010-0912-1.
Choi, J., S.-I. An, and S.-W. Yeh, 2012: Decadal amplitude modulation of two types of ENSO and its relationship with the mean state. Climate Dyn., 38, 2631−2644, https://doi.org/10.1007/s00382-011-1186-y.
Chung, P.-H., and T. Li, 2013: Interdecadal relationship between the mean state and El Niño types. J. Climate, 26, 361−379, https://doi.org/10.1175/JCLI-D-12-00106.1.
Dewitte, B., D. Gushchina, Y. duPenhoat, and S. Lakeev, 2002: On the importance of subsurface variability for ENSO simulation and prediction with intermediate coupled models of the Tropical Pacific: A case study for the 1997-1998 El Niño. Geophys. Res. Lett., 29, 1666, https://doi.org/10.1029/2001GL014452.
Dommenget, D., and Y. S. Yu, 2017: The effects of remote SST forcings on ENSO dynamics, variability and diversity. Climate Dyn., 49, 2605−2624, https://doi.org/10.1007/s00382-016-3472-1.
Fedorov, A. V., S. N. Hu, M. Lengaigne, and E. Guilyardi, 2015: The impact of westerly wind bursts and ocean initial state on the development, and diversity of El Niño events. Climate Dyn., 44, 1381−1401, https://doi.org/10.1007/s00382-014-2126-4.
Feng, J., T. Lian, J. Ying, J. D. Li, and G. Li, 2020: Do CMIP5 models show El Niño diversity. J. Climate, 33, 1619−1641, https://doi.org/10.1175/JCLI-D-18-0854.1.
Freund, M. B., B. J. Henley, D. J. Karoly, H. V. McGregor, N. J. Abram, and D. Dommenget, 2019: Higher frequency of Central Pacific El Niño events in recent decades relative to past centuries. Nature Geoscience, 12, 450−455, https://doi.org/10.1038/s41561-019-0353-3.
Gao, C., and R.-H. Zhang, 2017: The roles of atmospheric wind and entrained water temperature (Te) in the second-year cooling of the 2010-12 La Niña event. Climate Dyn., 48, 597−617, https://doi.org/10.1007/s00382-016-3097-4.
Gao, C., M. N. Chen, L. Zhou, L. C. Feng, and R.-H. Zhang, 2022: The 2020-2021 prolonged La Niña evolution in the tropical Pacific. Science China Earth Science, 65, 2248−2266, https://doi.org/10.1007/s11430-022-9985-4.
Gushchina, D., M. Kolennikova, B. Dewitte, and S.-W. Yeh, 2022: On the relationship between ENSO diversity and the ENSO atmospheric teleconnection to high-latitudes. International Journal of Climatology, 42, 1303−1325, https://doi.org/10.1002/JOC.7304.
Ham, Y.-G., and J.-S. Kug, 2015: Role of North Tropical Atlantic SST on the ENSO simulated using CMIP3 and CMIP5 models. Climate Dyn., 45, 3103−3117, https://doi.org/10.1007/s00382-015-2527-z.
Ham, Y.-G., J.-S. Kug, J.-Y. Park, and F.-F. Jin, 2013a: Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern oscillation events. Nature Geoscience, 6, 112−116, https://doi.org/10.1038/ngeo1686.
Ham, Y.-G., J.-S. Kug, and J.-Y. Park, 2013b: Two distinct roles of Atlantic SSTs in ENSO variability: North tropical Atlantic SST and Atlantic Niño. Geophys. Res. Lett., 40, 4012−4017, https://doi.org/10.1002/grl.50729.
Hou, M. Y., and Y. M. Tang, 2022: Recent progress in simulating two types of ENSO–from CMIP5 to CMIP6. Frontiers in Marine Science, 9, 986780, https://doi.org/10.3389/fmars.2022.986780.
Hu, J. Y., R.-H. Zhang, and C. Gao, 2019: A hybrid coupled ocean-atmosphere model and its simulation of ENSO and atmospheric responses. Adv. Atmos. Sci., 36, 643−657, https://doi.org/10.1007/s00376-019-8197-8.
Hu, J. Y., H. N. Wang, C. Gao, L. Zhou, and R.-H. Zhang, 2023: Interdecadal wind stress variability over the tropical Pacific causes ENSO diversity in an intermediate coupled model. Climate Dyn., 60, 1831−1847, https://doi.org/10.1007/s00382-022-06414-x.
Hu, Z. Z., A. Kumar, B. Jha, W. Q. Wang, B. H. Huang, and B. Y. Huang, 2012: An analysis of warm pool and cold tongue El Niños: Air-sea coupling processes, global influences, and recent trends. Climate Dyn., 38, 2017−2035, https://doi.org/10.1007/s00382-011-1224-9.
Huang, B. Y., and Coauthors, 2017: Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 8179−8205, https://doi.org/10.1175/JCLI-D-16-0836.1.
Jiang, L. S., and T. M. Li, 2021: Impacts of tropical North Atlantic and equatorial Atlantic SST anomalies on ENSO. J. Climate, 34, 5635−5655, https://doi.org/10.1175/JCLI-D-20-0835.1.
Jin, F.-F., 2022: Toward understanding El Niño Southern-Oscillation’s spatiotemporal pattern diversity. Frontiers in Earth Science, 10, 899139, https://doi.org/10.3389/feart.2022.899139.
Kajtar, J. B., A. Santoso, M. H. England, and W. J. Cai, 2017: Tropical climate variability: Interactions across the Pacific, Indian, and Atlantic Oceans. Climate Dyn., 48, 2173−2190, https://doi.org/10.1007/s00382-016-3199-z.
Kang, I.-S., S.-I. An, and F.-F. Jin, 2001: A systematic approximation of the SST anomaly equation for ENSO. J. Meteor. Soc. Japan, 79, 1−10, https://doi.org/10.2151/jmsj.79.1.
Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615−632, https://doi.org/10.1175/2008JCLI2309.1.
Keenlyside, N., and R. Kleeman, 2002: Annual cycle of equatorial zonal currents in the Pacific. J. Geophys. Res., 107 (C8), 3093, https://doi.org/10.1029/2000JC000711.
Kim, D.-W., K.-S. Choi, and H.-R. Byun, 2012: Effects of El Niño Modoki on winter precipitation in Korea. Climate Dyn., 38, 1313−1324, https://doi.org/10.1007/s00382-011-1114-1.
Kucharski, F., F. S. Syed, A. Burhan, I. Farah, and A. Gohar, 2015: Tropical Atlantic influence on Pacific variability and mean state in the twentieth century in observations and CMIP5. Climate Dyn., 44, 881−896, https://doi.org/10.1007/s00382-014-2228-z.
Kug, J.-S., F.-F. Jin, and S.-I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 1499−1515, https://doi.org/10.1175/2008JCLI 2624.1.
Kug, J.-S., J. Choi, S.-I. An, F.-F. Jin, and A. T. Wittenberg, 2010: Warm pool and cold tongue El Nino events as simulated by the GFDL 2.1 coupled GCM. J. Climate, 23, 1226−1239, https://doi.org/10.1175/2009JCLI3293.1.
Larkin, N. K., and D. E. Harrison, 2005: On the definition of El Niño and associated seasonal average U.S. weather anomalies. Geophys. Res. Lett., 32, L13705, https://doi.org/10.1029/2005GL022738.
Lee, T., and M. J. McPhaden, 2010: Increasing intensity of El Niño in the central-equatorial Pacific. Geophys. Res. Lett., 37, L14603, https://doi.org/10.1029/2010GL044007.
Levine, A., F. F. Jin, and M. J. McPhaden, 2016: Extreme noise-extreme El Niño: How state-dependent noise forcing creates El Niño-La Niña asymmetry. J. Climate, 29, 5483−5499, https://doi.org/10.1175/JCLI-D-16-0091.1.
Li, Y., J. P. Li, W. J. Zhang, Q. L. Chen, J. Feng, F. Zheng, W. Wang, and X. Zhou, 2017: Impacts of the tropical Pacific cold tongue mode on ENSO diversity under global warming. J. Geophys. Res., 122, 8524−8542, https://doi.org/10.1002/2017JC013052.
Lian, T., D. K. Chen, Y. M. Tang, X. H. Liu, J. Feng, and L. Zhou, 2018: Linkage between westerly wind bursts and tropical cyclones. Geophys. Res. Lett., 45 , 11 431−11 438, https://doi.org/10.1029/2018GL079745.
Lu, Y. L., J. Q. Feng, F. Jia, and D. X. Hu, 2022: Interdecadal change in the relationship between the El Niño-Southern Oscillation and the North/South Pacific Meridional Mode. J. Geophys. Res., 127, e2021JC018284, https://doi.org/10.1029/2021JC018284.
McCreary, J. P., 1981: A linear stratified ocean model of the equatorial undercurrent. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 298, 603−635, https://doi.org/10.1098/rsta.1981.0002.
McPhaden, M. J., S. E. Zebiak, and M. H. Glantz, 2006: ENSO as an integrating concept in earth science. Science, 314, 1740−1745, https://doi.org/10.1126/science.1132588.
Min, Q. Y., J. Z. Su, and R. H. Zhang, 2017: Impact of the South and North Pacific Meridional modes on the El Niño–Southern Oscillation: Observational analysis and comparison. J. Climate, 30, 1705−1720, https://doi.org/10.1175/JCLI-D-16-0063.1.
Nonaka, M., S.-P. Xie, and J. P. McCreary, 2002: Decadal variations in the subtropical cells and equatorial Pacific SST. Geophys. Res. Lett., 29, 1116, https://doi.org/10.1029/2001GL013717.
Ogata, T., S.-P. Xie, A. Wittenberg, and D.-Z. Sun, 2013: Interdecadal amplitude modulation of El Niño–Southern Oscillation and its impact on tropical pacific decadal variability. J. Climate, 26, 7280−7297, https://doi.org/10.1175/JCLI-D-12-00415.1.
Philander, S. G. H., T. Yamagata, and R. C. Pacanowski, 1984: Unstable air-sea interactions in the tropics. J. Atmos. Sci., 41, 604−613, https://doi.org/10.1175/1520-0469(1984)041<0604:UASIIT>2.0.CO;2.
Planton, Y. Y., and Coauthors, 2021: Evaluating climate models with the CLIVAR 2020 ENSO metrics package. Bull. Amer. Meteor. Soc., 102 (2), E193−E217, https://doi.org/10.1175/BAMS-D-19-0337.1.
Power, S., and Coauthors, 2021: Decadal climate variability in the tropical Pacific: Characteristics, causes, predictability, and prospects. Science, 374, eaay9165, https://doi.org/10.1126/science.aay9165.
Reynolds, R. W., and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7, 929−948, https://doi.org/10.1175/1520-0442(1994)007<0929:IGSSTA>2.0.CO;2.
Roeckner, E., and Coauthors, 2003: The atmospheric general circulation model ECHAM 5. Part I: Model description. Max Planck Institute for Meteorology Report. 349, 133 pp.
Sirven, J., and A. Vintzileos, 2000: The seasonal cycle in a coupled experiment with an atmospheric GCM and a two-layer equatorial ocean model. Climate Dyn., 16, 851−866, https://doi.org/10.1007/s003820000084.
Sullivan, A., J.-J. Luo, A. C. Hirst, D. H. Bi, W. J. Cai, and J. H. He, 2016: Robust contribution of decadal anomalies to the frequency of central-Pacific El Niño. Scientific Reports, 6, 38540, https://doi.org/10.1038/srep38540.
Taschetto, A. S., A. S. Gupta, N. C. Jourdain, A. Santoso, C. C. Ummenhofer, and M. H. England, 2014: Cold tongue and warm pool ENSO events in CMIP5: Mean state and future projections. J. Climate, 27, 2861−2885, https://doi.org/10.1175/JCLI-D-13-00437.1.
Timmermann, A., and Coauthors, 2018: El Niño–Southern Oscillation complexity. Nature, 559, 535−545, https://doi.org/10.1038/s41586-018-0252-6.
Trenberth, K. E., and L. Smith, 2009: Variations in the three-dimensional structure of the atmospheric circulation with different flavors of El Niño. J. Climate, 22, 2978−2991, https://doi.org/10.1175/2008JCLI2691.1.
Vimont, D. J., J. M. Wallace, and D. S. Battisti, 2003: The seasonal footprinting mechanism in the Pacific: Implications for ENSO. J. Climate, 16, 2668−2675, https://doi.org/10.1175/1520-0442(2003)016<2668:TSFMIT>2.0.CO;2.
Wang, L., J.-Y. Yu, and H. Paek, 2017: Enhanced biennial variability in the Pacific due to Atlantic capacitor effect. Nature Communications, 8, 14887, https://doi.org/10.1038/ncomms14 887.
Wang, Q. Y., and J. P. Li, 2022a: Feedback of tropical cyclones on El Niño diversity. Part I: Phenomenon. Climate Dyn., 59, 169−184, https://doi.org/10.1007/s00382-021-06122-y.
Wang, Q. Y., and J. P. Li, 2022b: Feedback of tropical cyclones on El Niño diversity. Part II: Possible mechanism and prediction. Climate Dyn., 59, 715−735, https://doi.org/10.1007/s00382-022-06150-2.
Weng, H. Y., K. Ashok, S. K. Behera, S. A. Rao, and T. Yamagata, 2007: Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Climate Dyn., 29, 113−129, https://doi.org/10.1007/s00382-007-0234-0.
Weng, H. Y., S. K. Behera, and T. Yamagata, 2009: Anomalous winter climate conditions in the Pacific rim during recent El Niño Modoki and El Niño events. Climate Dyn., 32, 663−674, https://doi.org/10.1007/s00382-008-0394-6.
Yeh, S.-W., J.-S. Kug, B. Dewitte, M.-H. Kwon, B. P. Kirtman, and F.-F. Jin, 2009: El Niño in a changing climate. Nature, 461, 511−514, https://doi.org/10.1038/nature08316.
Yeh, S.-W., B. P. Kirtman, J.-S. Kug, W. Park, and M. Latif, 2011: Natural variability of the central Pacific El Niño event on multi-centennial timescales. Geophys. Res. Lett., 38, L02704, https://doi.org/10.1029/2010GL045886.
Yu, J.-Y., and S. T. Kim, 2011: Relationships between extratropical sea level pressure variations and the Central Pacific and Eastern Pacific types of ENSO. J. Climate, 24, 708−720, https://doi.org/10.1175/2010JCLI3688.1.
Yu, J.-Y., H.-Y. Kao, and T. Lee, 2010: Subtropics-related interannual sea surface temperature variability in the central equatorial Pacific. J. Climate, 23, 2869−2884, https://doi.org/10.1175/2010JCLI3171.1.
Yu, J.-Y., Y. H. Zou, S. T. Kim, and T. Lee, 2012: The changing impact of El Niño on US winter temperatures. Geophys. Res. Lett., 39, L15702, https://doi.org/10.1029/2012GL052483.
Yu, J.-Y., P.-K. Kao, H. Paek, H.-H. Hsu, C.-W. Hung, M.-M. Lu, and S.-I. An, 2015: Linking emergence of the Central Pacific El Niño to the Atlantic Multidecadal Oscillation. J. Climate, 28, 651−662, https://doi.org/10.1175/JCLI-D-14-00347.1.
Zebiak, S. E., and M. A. Cane, 1987: A model El Niño-Southern Oscillation. Mon. Wea. Rev., 115, 2262−2278, https://doi.org/10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2.
Zhang, H. H., A. Clement, and P. Di Nezio, 2014a: The South Pacific meridional mode: A mechanism for ENSO-like variability. J. Climate, 27, 769−783, https://doi.org/10.1175/JCLI-D-13-00082.1.
Zhang, H. H., C. Deser, A. Clement, and R. Tomas, 2014b: Equatorial signatures of the Pacific Meridional Modes: Dependence on mean climate state. Geophys. Res. Lett., 41, 568−574, https://doi.org/10.1002/2013GL058842.
Zhang, R.-H., and C. Gao, 2016: The IOCAS intermediate coupled model (IOCAS ICM) and its real-time predictions of the 2015-2016 El Niño event. Science Bulletin, 61, 1061−1070, https://doi.org/10.1007/s11434-016-1064-4.
Zhang, R.-H., L. M. Rothstein, and A. J. Busalacchi, 1998: Origin of upper-ocean warming and El Niño change on decadal scales in the tropical Pacific Ocean. Nature, 391, 879−883, https://doi.org/10.1038/36081.
Zhang, R.-H., S. E. Zebiak, R. Kleeman, and N. Keenlyside, 2003: A new intermediate coupled model for El Niño simulation and prediction. Geophys. Res. Lett., 30 (19), 2012, https://doi.org/10.1029/2003GL018010.
Zhang, R.-H., R. Kleeman, S. E. Zebiak, N. Keenlyside, and S. Raynaud, 2005: An empirical parameterization of subsurface entrainment temperature for improved SST anomaly simulations in an intermediate ocean model. J. Climate, 18, 350−371, https://doi.org/10.1175/JCLI-3271.1.
Zhang, R.-H., and Coauthors, 2020: A review of progress in coupled ocean-atmosphere model developments for ENSO studies in China. Journal of Oceanology and Limnology, 38, 930−961, https://doi.org/10.1007/s00343-020-0157-8.
Zhang, R.-H., C. Gao, and L. C. Feng, 2022: Recent ENSO evolution and its real-time prediction challenges. National Science Review, 9 (4), nwac052, https://doi.org/10.1093/nsr/nwac052.
Zhao, X., G. Yang, D. L. Yuan, and Y. Z. Zhang, 2023: Linking the tropical Indian Ocean basin mode to the central-Pacific type of ENSO: Observations and CMIP5 reproduction. Climate Dyn., 60, 1705−1727, https://doi.org/10.1007/s00382-022-06387-x.
Zhong, W. X., X.-T. Zheng, and W. J. Cai, 2017: A decadal tropical Pacific condition unfavorable to central Pacific El Niño. Geophys. Res. Lett., 44, 7919−7926, https://doi.org/10.1002/2017GL073846.
Zou, Y. H., J.-Y. Yu, T. Lee, M.-M. Lu, and S. T. Kim, 2014: CMIP5 model simulations of the impacts of the two types of El Niño on the U.S. winter temperature. J. Geophys. Res., 119, 3076−3092, https://doi.org/10.1002/2013JD021064.
Zuo, H., M. A. Balmaseda, S. Tietsche, K. Mogensen, and M. Mayer, 2019: The ECMWF operational ensemble reanalysis-analysis system for ocean and sea ice: A description of the system and assessment. Ocean Science, 15, 779−808, https://doi.org/10.5194/os-15-779-2019.