Browning, K. A., and T. W. Harrold, 1970: Air motion and precipitation growth at a cold front. Quart. J. Roy. Meteor. Soc., 96, 369−389, https://doi.org/10.1002/qj.49709640903.
Chen, B., J. Yang, and J. Pu, 2013: Statistical characteristics of raindrop size distribution in the Meiyu season observed in eastern China. Journal of the Meteorological Society of Japan Series Ⅱ, 91(2), 215−227, https://doi.org/10.2151/jmsj.2013-208.
Chen, Y., and P. M. Zhai, 2014: Two types of typical circulation pattern for persistent extreme precipitation in Central-Eastern China. Quart. J. Roy. Meteor. Soc., 140(682), 1467−1478, https://doi.org/10.1002/qj.2231.
Chen, Y., and P. M. Zhai, 2016: Mechanisms for concurrent low-latitude circulation anomalies responsible for persistent extreme precipitation in the Yangtze river valley. Climate Dyn., 47(3), 989−1006, https://doi.org/10.1007/s00382-015-2885-6.
Cui, C. G., and Coauthors, 2015: The Mesoscale Heavy Rainfall Observing System (MHROS) over the middle region of the Yangtze River in China. J. Geophys. Res., 120, 10 399−10 417, https://doi.org/10.1002/2015JD023341.
Cui, C. G., X. Q. Dong, B. Wang, and H. Yang, 2020a: The phase two of the integrative monsoon Frontal Rainfall Experiment (IMFRE-Ⅱ) in the middle and lower reaches of the Yangtze River in 2020. Adv. Atmos. Sci., https://doi.org/10.1007/s00376-020-0262-9.
Cui, W. J., X. Q. Dong, B. K. Xi, and M. Liu, 2020b: Cloud and precipitation properties of MCSs along the Meiyu frontal zone in central and southern China and their associated large-scale environments. J. Geophys. Res., 125, e2019JD031601, https://doi.org/10.1029/2019JD031601.
Ding, Y. H., 1992: Summer monsoon rainfalls in China. J. Meteor. Soc. Japan, 70(1B), 373−396, https://doi.org/10.2151/jmsj1965.70.1B_373.
Ding, Y. H., and J. C. L. Chan, 2005: The East Asian summer monsoon: An overview. Meteorol. Atmos. Phys., 89, 117−142, https://doi.org/10.1007/s00703-005-0125-z.
Ding, Y. H., J. J. Liu, Y. Sun, Y. J. Liu, J. H. He, and Y. F. Song, 2007: A study of the synoptic-climatology of the Meiyu system in East Asia. Chinese Journal of Atmospheric Sciences, 31, 1082−1101, https://doi.org/10.3878/j.issn.1006-9895.2007.06.05. (in Chinese with English abstract)
Ding, Y. H., P. Liang, Y. J. Liu, and Y. C. Zhang, 2020: Multiscale variability of Meiyu and its prediction: A new review. J. Geophys. Res., 125, e2019JD031496, https://doi.org/10.1029/2019JD031496.
Fang S., K. Wang, M. Wang, and Z. Lv, 2019: Hubei Climate Service Handbook: Climate Background. Wuhan Regional Climate Centre (WRCC), 137 pp (in Chinese).
Fu, Z. K., X. Q. Dong, L. L. Zhou, W. J. Cui, J. Y. Wang, R. Wan, L. Leng, and B. K. Xi, 2020: Statistical characteristics of raindrop size distributions and parameters in central China during the Meiyu seasons. J. Geophys. Res., 125, e2019JD031954, https://doi.org/10.1029/2019JD031954.
Fulton, A., R. P. Breidenbach, D.-J. Seo, D. A. Miller, and T. O'Bannon, 1998: The WSR-88D rainfall algorithm. Weather and Forecasting, 13, 377−395, https://doi.org/10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2.
Geng, B., 2014: Case Study of a split front and associated precipitation during the Mei-Yu season. Wea. Forecasting, 29, 996−1002, https://doi.org/10.1175/WAF-D-13-00111.1.
Geng, B., and H. Yamada, 2007: Diurnal variations of the Meiyu/Baiu rain belt. SOLA, 3, 61−64, https://doi.org/10.2151/sola.2007-016.
Guan, P. Y., G. X. Chen, W. X. Zeng, and Q. Liu, 2020: Corridors of Mei-Yu-season rainfall over eastern China. J. Climate, 33, 2603−2626, https://doi.org/10.1175/JCLI-D-19-0649.1.
Hu, Y., Y. Deng, Z. M. Zhou, C. G. Cui, and X. Q. Dong, 2019a: A statistical and dynamical characterization of large-scale circulation patterns associated with summer extreme precipitation over the middle reaches of Yangtze River. Climate Dyn., 52(9−10), 6213−6228, https://doi.org/10.1007/s00382-018-4501-z.
Hu, Y., Y. Deng, Z. M. Zhou, H. L. Li, C. G. Cui, and X. Q. Dong, 2019b: A synoptic assessment of the summer extreme rainfall over the middle reaches of Yangtze River in CMIP5 models. Climate Dyn., 53, 2133−2146, https://doi.org/10.1007/s00382-019-04803-3.
Jin, Q., Y. Yuan, H. J. Liu, C. E Shi, and J. B. Li, 2015: Analysis of microphysical characteristics of the raindrop spectrum over the area between the Yangtze River and the Huaihe River during summer. Acta Meteorologica Sinica, 73(4), 778−788, https://doi.org/10.11676/qxxb2015.036.
Li, C., Y. Deng, C. G. Cui, X. F. Wang, X. Q. Dong, and X. W. Jiang, 2020: Hydrometeor budget of the Meiyu frontal rainstorms associated with two different atmospheric circulation patterns. J. Geophys. Res., 125, e2019JD031955, https://doi.org/10.1029/2019JD031955.
Lin, Y. J., R. W. Pasken, and H. W. Chang, 1992: The structure of a subtropical prefrontal convective rainband. Part I: Mesoscale kinematic structure determined from Dual-Doppler measurements. Mon. Wea. Rev., 120, 1816−1836, https://doi.org/10.1175/1520-0493(1992)120<1816:TSOASP>2.0.CO;2.
Liu, L., and Coauthors, 2020: Localization and invigoration of Mei‐Yu front rainfall due to aerosol‐cloud interactions: A preliminary assessment based on WRF simulations and IMFRE 2018 field observations. J. Geophys. Res., 125, e2019JD031952, https://doi.org/10.1029/2019JD031952.
Liu, M. L., and Q. Q. Wang, 2006: Anomalies of extreme precipitation during the Meiyu period of Jianghuai valleys and its general circulation characteristics. Proceedings of 2006 Annual Meeting of the Chinese Meteorological Society, Chinese Meteorological Society, Chengdu, China, 1899−1908. (in Chinese)
Luo, Y. L., Y. Gong, and D. L. Zhang, 2014: Initiation and organizational modes of an extreme-rain-producing mesoscale convective system along a Mei-Yu front in East China. Mon. Wea. Rev., 142, 203−221, https://doi.org/10.1175/MWR-D-13-00111.1.
Marshall, J. S., and W. M. K. Palmer, 1948: The distribution of raindrops with size. Journal of Meteorology, 5(4), 165−166, https://doi.org/10.1175/1520-0469(1948)005%c0165:TDORWS%e2.0.CO;2.
Ninomiya, K., and K. Kurihara, 1987: Forecast experiment of a long-lived meso-α-scale convective system in Baiu frontal zone. J. Meteor. Soc. Japan, 65, 885−899, https://doi.org/10.2151/jmsj1965.65.6_885.
Sampe, T., and S. P. Xie, 2010: Large-scale dynamics of the Meiyu-Baiu rainband: Environmental forcing by the westerly Jet. J. Climate, 23, 113−134, https://doi.org/10.1175/2009JCLI3128.1.
Sun, Y. T., X. Q. Dong, W. J. Cui, Z. M. Zhou, Z. K. Fu, L. L. Zhou, Y. Deng, and C. G. Cui, 2020: Vertical structures of typical Meiyu precipitation events retrieved from GPM-DPR. J. Geophys. Res., 125, e2019jd031466, https://doi.org/10.1029/2019JD031466.
Takeda, T., 1971: Numerical simulation of a precipitating convective cloud: The formation of a “long-lasting” cloud. J. Atmos. Sci., 28(3), 350−376, https://doi.org/10.1175/1520-0469(1971)028<0350:NSOAPC>2.0.CO;2.
Tao, S. Y., and L. X. Chen, 1987: A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology, C. P. Chang and T. N. Krishnamurti, Eds., Oxford University Press, 60−92.
Wang, W. C., W. Gong, and H. L. Wei, 2000: A regional model simulation of the 1991 severe precipitation event over the Yangtze-Huai River valley. Part I: Precipitation and circulation statistics. J. Climate, 13, 74−92, https://doi.org/10.1175/1520-0442(2000)013<0074:ARMSOT>2.0.CO;2.
Wang, X. K., X. Q. Dong, Y. Deng, C. G. Cui, R. Wan, and W. J. Cui, 2019: Contrasting pre-Mei-Yu and Mei-Yu extreme precipitation in the Yangtze River valley: Influencing systems and precipitation mechanisms. Journal of Hydrometeorology, 20, 1961−1980, https://doi.org/10.1175/JHM-D-18-0240.1.
Yang, H., G. Y. Xu, C. G. Cui, J. Y. Wang, and D. X. He, 2019: Quantitative analysis of water vapor transport during Mei-Yu front rainstorm period over the Tibetan plateau and Yangtze-Huai River basin. Advances in Meteorology, 2019, 6029027, https://doi.org/10.1155/2019/6029027.
Yang, J. M., and Coauthors, 2020: Spatial distribution and impacts of aerosols on clouds under Meiyu frontal weather background over central China based on aircraft observations. J. Geophys. Res., 125, e2019JD031915, https://doi.org/10.1029/2019JD031915.
Zhang, A. Q., Y. L. Chen, S. N. Zhou, C. G. Cui, R. Wan, and Y. F. Fu, 2020: Diurnal variation of Meiyu rainfall in the Yangtze plain during atypical Meiyu years. J. Geophys. Res., 125, e2019JD031742, https://doi.org/10.1029/2019JD031742.
Zhang, G. F., J. Z. Sun, and E. A. Brandes, 2006: Improving parameterization of rain microphysics with disdrometer and radar observations. J. Atmos. Sci., 63(4), 1273−1290, https://doi.org/10.1175/jas3680.1.
Zhang, S. L., S. Y. Tao, Q. Y. Zhang, and J. Wei, 2002: Large and meso-α scale characteristics of intense rainfall in the mid- and lower reaches of the Yangtze River. Chinese Science Bulletin, 47, 779−786, https://doi.org/10.1360/02tb9176.
Zhang, X. L., S. Y. Tao, and S. L. Zhang, 2004: Three types of heavy rainstorms associated with the Meiyu front. Chinese Journal of Atmospheric Sciences, 28, 187−205, https://doi.org/10.3878/j.issn.1006-9895.2004.02.03. (in Chinese with English abstract)
Zhou, L. L., X. Q. Dong, Z. K. Fu, B. Wang, L. Leng, B. K. Xi, and C. G. Cui, 2020: Vertical distributions of raindrops and Z-R relationships using microrain radar and 2-D-video distrometer measurements during the Integrative Monsoon Frontal Rainfall Experiment (IMFRE). J. Geophys. Res., 125, e2019JD031108, https://doi.org/10.1029/2019JD031108.