Aarons, Z. S., S. J. Camargo, J. D. O. Strong, and H. Murakami, 2021: Tropical cyclone characteristics in the MERRA-2 reanalysis and AMIP simulations. Earth and Space Science, 8, e2020EA001415, https://doi.org/10.1029/2020EA001415.
Bao, Q., and B. He, 2019: CAS FGOALS-f3-H model output prepared for CMIP6 HighResMIP highresSST-present. Version 20190816. Earth System Grid Federation.
Bao, Q., and J. Li, 2020: Progress in climate modeling of precipitation over the Tibetan Plateau. National Science Review, 7, 486−487, https://doi.org/10.1093/nsr/nwaa006.
Bao, Q., and Coauthors, 2020: CAS FGOALS-f3-H and CAS FGOALS-f3-L outputs for the high-resolution model intercomparison project simulation of CMIP6. Atmospheric and Oceanic Science Letters, 13(6), 576−581, https://doi.org/10.1080/16742834.2020.1814675.
Camargo, S. J., 2013: Global and regional aspects of tropical cyclone activity in the CMIP5 models. J. Climate, 26, 9880−9902, https://doi.org/10.1175/JCLI-D-12-00549.1.
Camargo, S. J., and S. H. Sobel, 2004: Formation of tropical storms in an atmospheric general circulation model. Tellus A, 56, 56−67, https://doi.org/10.3402/tellusa.v56i1.14387.
Camargo, S. J., and A. H. Sobel, 2005: Western North Pacific tropical cyclone intensity and ENSO. J. Climate, 18, 2996−3006, https://doi.org/10.1175/JCLI3457.1.
Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52(22), 3969−3976, https://doi.org/10.1175/1520-0469(1995)052<3969:SOTCTS>2.0.CO;2.
Emanuel, K., C. DesAutels, C. Holloway, and R. Korty, 2004: Environmental control of tropical cyclone intensity. J. Atmos. Sci., 61, 843−858, https://doi.org/10.1175/1520-0469(2004)061<0843:ECOTCI>2.0.CO;2.
Fu, B., M. S. Peng, T. M. Li, and D. E. Stevens, 2012: Developing versus nondeveloping disturbances for tropical cyclone formation. Part II: Western North Pacific. Mon. Wea. Rev., 140, 1067−1080, https://doi.org/10.1175/2011mwr3618.1.
Gilford, D. M., 2021: pyPI (v1.3): Tropical Cyclone Potential Intensity Calculations in Python. Geoscientific Model Development, 14, 2351−2369, https://doi.org/10.5194/gmd-14-2351-2021.
Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447−462, https://doi.org/10.1002/qj.49710644905.
Haarsma, R. J., and Coauthors, 2016: High resolution model intercomparison project (HighResMIP v1.0) for CMIP6. Geoscientific Model Development, 9, 4185−4208, https://doi.org/10.5194/gmd-9-4185-2016.
He, B., and Coauthors, 2019: CAS FGOALS-f3-L model datasets for CMIP6 historical atmospheric model Intercomparison project simulation. Adv. Atmos. Sci., 36, 771−778, https://doi.org/10.1007/s00376-019-9027-8.
He, B., and Coauthors, 2020: CAS FGOALS-f3-L model datasets for CMIP6 GMMIP Tier-1 and Tier-3 experiments. Adv. Atmos. Sci., 37, 18−28, https://doi.org/10.1007/s00376-019-9085-y.
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999−2049, https://doi.org/10.1002/qj.3803.
Hou, A. Y., and Coauthors, 2014: The global precipitation measurement mission. Bull. Amer. Meteor. Soc., 95, 701−722, https://doi.org/10.1175/bams-d-13-00164.1.
Huffman, G. J., E. F. Stocker, D. T. Bolvin, E. J. Nelkin, and T. Jackson, 2019: GPM IMERG Final Precipitation L3 1 day 0.1 degree x 0.1 degree V06. Goddard Earth Sciences Data and Information Services Center (GES DISC),
Knaff, J. A., and R. M. Zehr, 2007: Reexamination of tropical cyclone wind–pressure relationships. Wea. Forecasting, 22, 71−88, https://doi.org/10.1175/waf965.1.
Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The international best track archive for climate stewardship (IBTrACS): Unifying tropical cyclone data. Bull. Amer. Meteor. Soc., 91, 363−376, https://doi.org/10.1175/2009BAMS2755.1.
Li, J. X., Q. Bao, Y. M. Liu, G. X. Wu, L. Wang, B. He, X. C. Wang, and J. D. Li, 2019: Evaluation of FAMIL2 in simulating the climatology and seasonal-to-interannual variability of tropical cyclone characteristics. Journal of Advances in Modeling Earth Systems, 11, 1117−1136, https://doi.org/10.1029/2018MS001506.
Li, J. X., and Coauthors, 2021: Effect of horizontal resolution on the simulation of tropical cyclones in the Chinese Academy of Sciences FGOALS-f3 climate system model. Geoscientific Model Development, 14, 6113−6133, https://doi.org/10.5194/gmd-14-6113-2021.
Lu, X. Q., H. Yu, M. Ying, B. K. Zhao, S. Zhang, L. M. Lin, L. N. Bai, and R. J. Wan, 2021: Western North Pacific tropical cyclone database created by the China Meteorological Administration. Adv. Atmos. Sci., 38(4), 690−699, https://doi.org/10.1007/s00376-020-0211-7.
Magee, A. D., A. S. Kiem, and J. C. L. Chan, 2021: A new approach for location-specific seasonal outlooks of typhoon and super typhoon frequency across the Western North Pacific region. Scientific Reports, 11, 19439, https://doi.org/10.1038/s41598-021-98329-6.
Manganello, J. V., and Coauthors, 2012: Tropical cyclone climatology in a 10-km global atmospheric GCM: Toward weather-resolving climate modeling. J. Climate, 25, 3867−3893, https://doi.org/10.1175/JCLI-D-11-00346.1.
Mei, W., S.-P. Xie, M. Zhao, and Y. Q. Wang, 2015: Forced and internal variability of tropical cyclone track density in the Western North Pacific. J. Climate, 28, 143−167, https://doi.org/10.1175/jcli-d-14-00164.1.
Mizuta, R., H. Yoshimura, T. Ose, M. Hosaka, and S. Yukimoto, 2019: MRI MRI-AGCM3-2-S model output prepared for CMIP6 HighResMIP highresSST-present. Version 20190711. Earth System Grid Federation.
Mizuta, R., and Coauthors, 2012: Climate simulations using MRI-AGCM3.2 with 20-km grid. J. Meteor. Soc. Japan, 90A, 233−258, https://doi.org/10.2151/jmsj.2012-A12.
Moon, Y., and Coauthors, 2020: Azimuthally averaged wind and thermodynamic structures of tropical cyclones in global climate models and their sensitivity to horizontal resolution. J. Climate, 33, 1575−1595, https://doi.org/10.1175/jcli-d-19-0172.1.
Murakami, H., and B. Wang, 2010: Future change of North Atlantic Tropical Cyclone tracks: Projection by a 20-km-mesh global atmospheric model. J. Climate, 23, 2699−2721, https://doi.org/10.1175/2010JCLI3338.1.
Murakami, H., B. Wang, and A. Kitoh, 2011: Future change of western North Pacific typhoons: Projections by a 20-km-mesh global atmospheric model. J. Climate, 24(4), 1154−1169, https://doi.org/10.1175/2010JCLI3723.1.
Murakami, H., and Coauthors, 2012: Future changes in tropical cyclone activity projected by the new high-resolution MRI-AGCM. J. Climate, 25, 3237−3260, https://doi.org/10.1175/jcli-d-11-00415.1.
Pun, I.-F., I. I. Lin, and M.-H. Lo, 2013: Recent increase in high tropical cyclone heat potential area in the Western North Pacific Ocean. Geophys. Res. Lett., 40, 4680−4684, https://doi.org/10.1002/grl.50548.
Roberts, M. J., and Coauthors, 2015: Tropical cyclones in the UPSCALE ensemble of high-resolution global climate models. J. Climate, 28, 574−596, https://doi.org/10.1175/jcli-d-14-00131.1.
Roberts, M. J., and Coauthors, 2020a: Projected future changes in tropical cyclones using the CMIP6 HighResMIP multimodel ensemble. Geophys. Res. Lett., 47, e2020GL088662, https://doi.org/10.1029/2020GL088662.
Roberts, M. J., and Coauthors, 2020b: Impact of model resolution on tropical cyclone simulation using the HighResMIP–PRIMAVERA multimodel ensemble. J. Climate, 33, 2557−2583, https://doi.org/10.1175/JCLI-D-19-0639.1.
Shaevitz, D. A., and Coauthors, 2014: Characteristics of tropical cyclones in high-resolution models in the present climate. Journal of Advances in Modeling Earth Systems, 6, 1154−1172, https://doi.org/10.1002/2014MS000372.
Strachan, J., P. L. Vidale, K. Hodges, M. Roberts, and M.-E. Demory, 2013: Investigating global tropical cyclone activity with a hierarchy of AGCMs: The role of model resolution. J. Climate, 26, 133−152, https://doi.org/10.1175/JCLI-D-12-00012.1.
Tippett, M. K., S. J. Camargo, and A. H. Sobel, 2011: A Poisson regression index for tropical cyclone genesis and the role of large-scale vorticity in genesis. J. Climate, 24, 2335−2357, https://doi.org/10.1175/2010JCLI3811.1.
Ullrich, P. A., and C. M. Zarzycki, 2017: TempestExtremes: A framework for scale-insensitive pointwise feature tracking on unstructured grids. Geoscientific Model Development, 10, 1069−1090, https://doi.org/10.5194/gmd-10-1069-2017.
Ullrich, P. A., C. M. Zarzycki, E. E. McClenny, M. C. Pinheiro, A. M. Stansfield, and K. A. Reed, 2021: TempestExtremes v2.1: A community framework for feature detection, tracking, and analysis in large datasets. Geoscientific Model Development, 14, 5023−5048, https://doi.org/10.5194/gmd-14-5023-2021.
Wang, B., and J. C. L. Chan, 2002: How strong ENSO events affect tropical storm activity over the Western North Pacific. J. Climate, 15, 1643−1658, https://doi.org/10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2.
Wu, L. G., R. F. Wang, and X. F. Feng, 2018: Dominant role of the ocean mixed layer depth in the increased proportion of intense typhoons during 1980−2015. Earth's Future, 6, 1518−1527, https://doi.org/10.1029/2018EF000973.
Xi, D. Z., K. K. Chu, Z.-M. Tan, J.-F. Gu, W. Q. Shen, Y. Zhang, and J. P. Tang, 2021: Characteristics of warm cores of tropical cyclones in a 25-km-mesh regional climate simulation over CORDEX East Asia domain. Climate Dyn., 57, 2375−2389, https://doi.org/10.1007/s00382-021-05806-9.
Ying, M., W. Zhang, H. Yu, X. Q. Lu, J. X. Feng, Y. X. Fan, Y. T. Zhu, and D. Q. Chen, 2014: An overview of the China Meteorological Administration tropical cyclone database. J. Atmos. Oceanic Technol., 31, 287−301, https://doi.org/10.1175/JTECH-D-12-00119.1.
Yoshimura, H., R. Mizuta, and H. Murakami, 2015: A spectral cumulus parameterization scheme interpolating between two convective updrafts with Semi-Lagrangian calculation of transport by compensatory subsidence. Mon. Wea. Rev., 143, 597−621, https://doi.org/10.1175/mwr-d-14-00068.1.
Zarzycki, C. M., 2016: Tropical cyclone intensity errors associated with lack of two-way ocean coupling in high-resolution global simulations. J. Climate, 29, 8589−8610, https://doi.org/10.1175/JCLI-D-16-0273.1.
Zarzycki, C. M., and P. A. Ullrich, 2017: Assessing sensitivities in algorithmic detection of tropical cyclones in climate data. Geophys. Res. Lett., 44, 1141−1149, https://doi.org/10.1002/2016gl071606.
Zhan, R. F., Y. Q. Wang, and Y. H. Ding, 2022: Impact of the Western Pacific tropical easterly jet on tropical cyclone genesis frequency over the Western North Pacific. Adv. Atmos. Sci., 39(2), 235−248, https://doi.org/10.1007/s00376-021-1103-1.
Zhang, W., G. A. Vecchi, H. Murakami, G. Villarini, and L. Jia, 2016: The Pacific meridional mode and the occurrence of tropical cyclones in the western North Pacific. J. Climate, 29, 381−398, https://doi.org/10.1175/jcli-d-15-0282.1.
Zhao, H. K., L. G. Wu, and R. F. Wang, 2014: Decadal variations of intense tropical cyclones over the western North Pacific during 1948−2010. Adv. Atmos. Sci., 31, 57−65, https://doi.org/10.1007/s00376-013-3011-5.
Zhao, H. K., S. H. Chen, G. B. Raga, P. J. Klotzbach, and L. G. Wu, 2019: Recent decrease in genesis productivity of tropical cloud clusters over the Western North Pacific. Climate Dyn., 52, 5819−5831, https://doi.org/10.1007/s00382-018-4477-8.
Zhou, T. J., and Coauthors, 2009: Why the western Pacific subtropical high has extended westward since the late 1970s. J. Climate, 22, 2199−2215, https://doi.org/10.1175/2008JCLI2527.1.