Antokhina, O. Y., P. N. Antokhin, E. V. Devyatova, V. I. Mordvinov, and Y. V. Martynova, 2018: Precipitation in the Selenga River basin during atmospheric blocking over Europe and the Russian Far East in July. IOP Conference Series: Earth and Environmental Science, 211, 012054, https://doi.org/10.1088/1755-1315/211/1/012054.
Antokhina, O. Y., P. N. Antokhin, Y. V. Martynova, and V. I. Mordvinov, 2019: The linkage of the precipitation in the Selenga river basin to midsummer atmospheric blocking. Atmosphere, 10, 343, https://doi.org/10.3390/atmos10060343.
Barriopedro, D., R. García-Herrera, and R. M. Trigo, 2010: Application of blocking diagnosis methods to General Circulation Models. Part I: A novel detection scheme. Climate Dyn., 35(7−8), 1373−1391, https://doi.org/10.1007/s00382-010-0767-5.
Berezhnykh, T. V., O. Y. Marchenko, N. V. Abasov, and V. I. Mordvinov, 2012: Changes in the summertime atmospheric circulation over East Asia and formation of long-lasting low-water periods within the Selenga river basin. Geography and Natural Resources, 33(3), 223−229, https://doi.org/10.1134/S1875372812030079.
Bueh, C., and Z. W. Xie, 2013: Northeastern China cold vortex circulation and its dynamical features. Advances in Meteorological Science and Technology, 3(3), 34−39. (in Chinese with English abstract)
Bueh, C., and Z. W. Xie, 2015: An objective technique for detecting large-scale tilted ridges and troughs and its application to an East Asian cold event. Mon. Wea. Rev., 143, 4765−4783, https://doi.org/10.1175/MWR-D-14-00238.1.
Bueh, C., Y. Li, D. W. Lin, and Y. Lian, 2016: Interannual variability of summer rainfall over the northern part of China and the related circulation features. Journal of Meteorological Research, 30(5), 615−630, https://doi.org/10.1007/s13351-016-5111-5.
Bueh, C., J. B. Peng, Z. W. Xie, and L. R. Ji, 2018: Recent progresses on the studies of wintertime extensive and persistent extreme cold events in china and large-scale tilted ridges and troughs over the Eurasian continent. Chinese Journal of Atmospheric Sciences, 42(3), 656−676, https://doi.org/10.3878/j.issn.1006-9895.1712.17249. (in Chinese with English abstract)
Chen, H. S., F. D. Teng, W. X. Zhang, and H. Liao, 2017: Impacts of anomalous midlatitude cyclone activity over East Asia during summer on the decadal mode of East Asian summer monsoon and its possible mechanism. J. Climate, 30, 739−753, https://doi.org/10.1175/JCLI-D-16-0155.1.
Cheung, H. N., W. Zhou, H. Y. Mok, M. C. Wu, and Y. P. Shao, 2013: Revisiting the climatology of atmospheric blocking in the Northern Hemisphere. Adv. Atmos. Sci., 30(2), 397−410, https://doi.org/10.1007/s00376-012-2006-y.
Copernicus Climate Change Service (C3S), 2017: ERA5: Fifth Generation of ECMWF Atmospheric Reanalyses of the Global Climate. Copernicus Climate Change Service Climate Data Store (CDS). [Available online from https://cds.climate.copernicus.eu/cdsapp#!/home]
Diao, Y. N., J. P. Li, and D. H. Luo, 2006: A new blocking index and its application: Blocking action in the northern hemisphere. J. Climate, 19, 4819−4839, https://doi.org/10.1175/JCLI3886.1.
Gabriel, A., and D. Peters, 2008: A diagnostic study of different types of Rossby wave breaking events in the northern extratropics. J. Meteor. Soc. Japan, 86(5), 613−631, https://doi.org/10.2151/jmsj.86.613.
Gong, T. T., and D. H. Luo, 2017: Ural blocking as an amplifier of the Arctic sea ice decline in winter. J. Climate, 30, 2639−2654, https://doi.org/10.1175/JCLI-D-16-0548.1.
Hessl, A. E., and Coauthors, 2018: Past and future drought in Mongolia. Science Advances, 4(3), e1701832, https://doi.org/10.1126/sciadv.1701832.
Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877−946, https://doi.org/10.1002/qj.49711147002.
Huang, J. P., J. R. Ma, X. D. Guan, Y. Li, and Y. L. He, 2019: Progress in semi-arid climate change studies in China. Adv. Atmos. Sci., 36(9), 922−937, https://doi.org/10.1007/s00376-018-8200-9.
Jiang, Z. N., and D. H. Wang, 2012: The behaviors of optimal precursors during wintertime Eurasian blocking onset. Adv. Atmos. Sci., 29(6), 1174−1184, https://doi.org/10.1007/s00376-012-1102-3.
Jin, R. H., Y. Li, and S. G. Wang, 2009: Comparison and analysis among four objective and quantificational blocking indexes. Plateau Meteorology, 28(5), 1121−1128. (in Chinese with English abstract)
Li, F., and Y. H. Ding, 2004: Statistical Characteristic of atmospheric blocking in the Eurasia high-mid latitudes based on recent 30-year summers. Acta Meteorologica Sinica, 62, 347−354, https://doi.org/10.3321/j.issn:0577-6619.2004.03.009. (in Chinese with English abstract)
Li, J. B., and Coauthors, 2009: Summer monsoon moisture variability over China and Mongolia during the past four centuries. Geophys. Res. Lett., 36, L22705, https://doi.org/10.1029/2009GL041162.
Li, Y., C. Bueh, D. W. Lin, and Z. W. Xie, 2016: The dominant modes of summer precipitation over Inner Mongolia and its typical circulation characteristics. Chinese Journal of Atmospheric Sciences, 40(4), 756−776, https://doi.org/10.3878/j.issn.1006-9895.1509.15187. (in Chinese with English abstract)
Liu, Y., Y. Wang, and J. Liu, 2012: Inter-annual change of Lake Baikal blocking high and its possible relation to precipitation over China in summer. Desert and Oasis Meteorology, 6(1), 16−20, https://doi.org/10.3969/j.issn.1002-0799.2012.01.004. (in Chinese with English abstract)
Lü, Z. Z., S. P. He, F. Li, and H. J. Wang, 2019: Impacts of the autumn Arctic sea ice on the intraseasonal reversal of the winter Siberian high. Adv. Atmos. Sci., 36(2), 173−188, https://doi.org/10.1007/s00376-017-8089-8.
Luo, D. H., and Y. Yao, 2014: On the blocking flow patterns in the Euro-Atlantic sector: A simple model study. Adv. Atmos. Sci., 31(5), 1181−1196, https://doi.org/10.1007/s00376-014-3197-1.
Luo, D. H., J. T. Liu, and J. P. Li, 2010: Interaction between planetary-scale diffluent flow and synoptic-scale waves during the life cycle of blocking. Adv. Atmos. Sci., 27(4), 807−831, https://doi.org/10.1007/s00376-009-9074-7.
Masato, G., B. J. Hoskins, and T. J. Woollings, 2012: Wave-breaking characteristics of midlatitude blocking. Quart. J. Roy. Meteor. Soc., 138, 1285−1296, https://doi.org/10.1002/qj.990.
Masato, G., B. J. Hoskins, and T. Woollings, 2013: Wave-breaking characteristics of Northern Hemisphere winter blocking: A two-dimensional approach. J. Climate, 26(13), 4535−4549, https://doi.org/10.1175/JCLI-D-12-00240.1.
McIntyre, M. E., and T. N. Palmer, 1983: Breaking planetary waves in the stratosphere. Nature, 305(5935), 593−600, https://doi.org/10.1038/305593a0.
Michel, C., and G. Rivière, 2011: The Link between Rossby wave breakings and weather regime transitions. J. Atmos. Sci., 68(8), 1730−1748, https://doi.org/10.1175/2011JAS3635.1.
Nakamura, H., 1994: Rotational evolution of potential vorticity associated with a strong blocking flow configuration over Europe. Geophys. Res. Lett., 21, 2003−2006, https://doi.org/10.1029/94GL01614.
Nakamura, H., M. Nakamura, and J. L. Anderson, 1997: The role of high- and low-frequency dynamics in blocking formation. Mon. Wea. Rev., 125(9), 2074−2093, https://doi.org/10.1175/1520-0493(1997)125<2074:TROHAL>2.0.CO;2.
Nath, D., and W. Chen, 2016: Impact of planetary wave reflection on tropospheric blocking over the Urals-Siberia region in January 2008. Adv. Atmos. Sci., 33(3), 309−318, https://doi.org/10.1007/s00376-015-5052-4.
Obyazov, V. A., 2015: Regional response of surface air temperatures to global changes: Evidence from the Transbaikal region. Doklady Earth Sciences, 461, 375−378, https://doi.org/10.1134/S1028334X15040054.
Pelly, J. L., and B. J. Hoskins, 2003: A new perspective on blocking. J. Atmos. Sci., 60(5), 743−755, https://doi.org/10.1175/1520-0469(2003)060<0743:ANPOB>2.0.CO;2.
Peters, D., and D. W. Waugh, 1996: Influence of barotropic shear on the poleward advection of upper-tropospheric Air. J. Atmos. Sci., 53(21), 3013−3031, https://doi.org/10.1175/1520-0469(1996)053<3013:IOBSOT>2.0.CO;2.
Rex, D. F., 1950: Blocking action in the middle troposphere and its effect upon regional climate. I. An aerological study of blocking action. Tellus, 2, 196−211, https://doi.org/10.3402/tellusa.v2i3.8546.
Shi, N., X. Q. Wang, L. Y. Zhang, and H. M. Xu, 2016: Features of Rossby wave propagation associated with the evolution of summertime blocking highs with different configurations over Northeast Asia. Mon. Wea. Rev., 144(7), 2531−2546, https://doi.org/10.1175/MWR-D-15-0369.1.
Shi, X. J., and X. F. Zhi, 2007: Statistical characteristics of blockings in Eurasia from 1950 to 2004. Journal of Nanjing Institute of Meteorology, 30, 338−344, https://doi.org/10.3969/j.issn.1674-7097.2007.03.007. (in Chinese with English abstract)
Sneyers, R., 1990: On the statistical analysis of series of observations. Tech. Note No 143, 192 pp.
Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608−627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.
Thorncroft, C. D., B. J. Hoskins, and M. E. Mcintyre, 1993: Two paradigms of baroclinic-wave life-cycle behaviour. Quart. J. Roy. Meteor. Soc., 119(509), 17−55, https://doi.org/10.1002/qj.49711950903.
Tibaldi, S., and F. Molteni, 1990: On the operational predictability of blocking. Tellus A, 42, 343−365, https://doi.org/10.3402/tellusa.v42i3.11882.
Tyrlis, E., and B. J. Hoskins, 2008: Aspects of a Northern Hemisphere atmospheric blocking climatology. J. Atmos. Sci., 65(5), 1638−1652, https://doi.org/10.1175/2007JAS2337.1.
UCAR/NCAR/CISL/TDD, 2019: The NCAR Command Language (Version 6.6.2) [Software]. UCAR/NCAR/CISL/TDD, Boulder, Colorado, https://doi.org/10.5065/D6WD3XH5.
Wang, Y. F., X. D. Xu, A. R. Lupo, P. Y. Li, and Z. C. Yin, 2011: The remote effect of the Tibetan Plateau on downstream flow in early summer. J. Geophys. Res., 116, D19108, https://doi.org/10.1029/2011JD015979.
Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed., Cornell University, Elsevier, Amsterdam, Boston, London,, 649 pp.
Xie, Z., R. X. Black, and Y. Deng, 2019: Planetary and synoptic-scale dynamic control of extreme cold wave patterns over the United States. Climate Dyn., 53, 1477−1495, https://doi.org/10.1007/s00382-019-04683-7.
Xie, Z. W., and C. Bueh, 2015: Different types of cold vortex circulations over Northeast China and their weather impacts. Mon. Wea. Rev., 143(3), 845−863, https://doi.org/10.1175/MWR-D-14-00192.1.
Xie, Z. W., and C. Bueh, 2017: Cold vortex events over Northeast China associated with the Yakutsk-Okhotsk blocking. International Journal of Climatology, 37, 381−398, https://doi.org/10.1002/joc.4711.
Yao, Y., and D. H. Luo, 2015: Do European blocking events precede North Atlantic Oscillation events? Adv Atmos. Sci., 32(8), 1106−1118, https://doi.org/10.1007/s00376-015-4209-5.
Yatagai, A., K. Kamiguchi, O. Arakawa, A. Hamada, N. Yasutomi, and A. Kitoh, 2012: APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia Based on a dense network of rain gauges. Bull. Amer. Meteor. Soc., 93, 1401−1415, https://doi.org/10.1175/BAMS-D-11-00122.1.
Zhang, R. N., C. H. Sun, R. H. Zhang, L. W. Jia, and W. J. Li, 2018: The impact of Arctic sea ice on the inter-annual variations of summer Ural blocking. International Journal of Climatology, 38(12), 4632−4650, https://doi.org/10.1002/joc.5731.
Zhang, Y. C., X. Y. Kuang, W. D. Guo, and T. J. Zhou, 2006: Seasonal evolution of the upper-tropospheric westerly jet core over East Asia. Geophys. Res. Lett., 33, L11708, https://doi.org/10.1029/2006GL026377.