Aksoy, A., F. Q. Zhang, and J. W. Nielsen-Gammon, 2006a: Ensemble-based simultaneous state and parameter estimation in a two-dimensional sea-breeze model. Mon. Wea. Rev., 134, 2951−2970, https://doi.org/10.1175/MWR3224.1.
Aksoy, A., F. Q. Zhang, and J. W. Nielsen-Gammon, 2006b: Ensemble-based simultaneous state and parameter estimation with MM5. Geophys. Res. Lett., 33, L12801, https://doi.org/10.1029/2006GL026186.
Hu, X.-M., F. Q. Zhang, and J. W. Nielsen-Gammon, 2010a: Ensemble-based simultaneous state and parameter estimation for treatment of mesoscale model error: A real-data study. Geophys. Res. Lett., 37, L08802, https://doi.org/10.1029/2010GL043017.
Hu, X.-M., J. W. Nielsen-Gammon, and F. Q. Zhang, 2010b: Evaluation of three planetary boundary layer schemes in the WRF Model. J. Appl. Meteorol. Climatol., 49, 1831−1844, https://doi.org/10.1175/2010JAMC2432.1.
Lin, Y. H., and F. Q. Zhang, 2008: Tracking gravity waves in baroclinic jet-front systems. J. Atmos. Sci., 65, 2402−2415, https://doi.org/10.1175/2007JAS2482.1.
Melhauser, C., and F. Q. Zhang, 2012: Practical and intrinsic predictability of severe and convective weather at the mesoscales. J. Atmos. Sci., 69, 3350−3371, https://doi.org/10.1175/JAS-D-11-0315.1.
Melhauser, C., and F. Q. Zhang, 2014: Diurnal radiation cycle impact on the pregenesis environment of Hurricane Karl (2010). J. Atmos. Sci., 71, 1241−1259, https://doi.org/10.1175/JAS-D-13-0116.1.
Meng, Z. Y., and F. Q. Zhang, 2007: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part II: Imperfect model experiments. Mon. Wea. Rev., 135, 1403−1423, https://doi.org/10.1175/MWR3352.1.
Meng, Z. Y., and F. Q. Zhang, 2008a: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part III: Comparison with 3DVAR in a real-data case study. Mon. Wea. Rev., 136, 522−540, https://doi.org/10.1175/2007MWR2106.1.
Meng, Z. Y., and F. Q. Zhang, 2008b: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part IV: Comparison with 3DVAR in a month-long experiment. Mon. Wea. Rev., 136, 3671−3682, https://doi.org/10.1175/2008MWR2270.1.
Plougonven, R., and F. Q. Zhang, 2007: On the forcing of inertia-gravity waves by synoptic-scale flows. J. Atmos. Sci., 64, 1737−1742, https://doi.org/10.1175/JAS3901.1.
Poterjoy, J., and F. Q. Zhang, 2014: Intercomparison and coupling of ensemble and four-dimensional variational data assimilation methods for the analysis and forecasting of Hurricane Karl (2010). Mon. Wea. Rev., 142, 3347−3364, https://doi.org/10.1175/MWR-D-13-00394.1.
Ruppert, J. H. Jr., S. E. Koch, X. C. Chen, Y. Du, A. Seimon, Y. Q. Sun, J. H. Wei, and L. F. Bosart, 2021: Mesoscale gravity waves and midlatitude weather: A tribute to Fuqing Zhang. Bull. Amer. Meteor. Soc.,
Sippel, J. A., and F. Q. Zhang, 2008: A probabilistic analysis of the dynamics and predictability of tropical cyclogenesis. J. Atmos. Sci., 65, 3440−3459, https://doi.org/10.1175/2008JAS2597.1.
Sippel, J. A., and F. Q. Zhang, 2010: Factors affecting the predictability of hurricane Humberto (2007). J. Atmos. Sci., 67, 1759−1778, https://doi.org/10.1175/2010JAS3172.1.
Snyder, C., and F. Q. Zhang, 2003: Assimilation of simulated doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131, 1663−1677, https://doi.org/10.1175//2555.1.
Sun, Y. Q., and F. Q. Zhang, 2016: Intrinsic versus practical limits of atmospheric predictability and the significance of the butterfly effect. J. Atmos. Sci., 73, 1419−1438, https://doi.org/10.1175/JAS-D-15-0142.1.
Sun, Y. Q., R. Rotunno, and F. Q. Zhang, 2017: Contributions of moist convection and internal gravity waves to building the atmospheric -5/3 kinetic energy spectra. J. Atmos. Sci., 74, 185−201, https://doi.org/10.1175/JAS-D-16-0097.1.
Tao, D. D., and F. Q. Zhang, 2014: Effect of environmental shear, sea-surface temperature, and ambient moisture on the formation and predictability of tropical cyclones: An ensemble-mean perspective. Journal of Advances in Modeling Earth Systems, 6, 384−404, https://doi.org/10.1002/2014MS000314.
Tao, D. D., and F. Q. Zhang, 2015: Effects of vertical wind shear on the predictability of tropical cyclones: Practical versus intrinsic limit. Journal of Advances in Modeling Earth Systems, 7, 1534−1553, https://doi.org/10.1002/2015MS000474.
Wang, S. G., and F. Q. Zhang, 2007: Sensitivity of mesoscale gravity waves to the baroclinicity of jet-front systems. Mon. Wea. Rev., 135, 670−688, https://doi.org/10.1175/MWR3314.1.
Wang, S. G., and F. Q. Zhang, 2010: Source of gravity waves within a vortex-dipole jet revealed by a linear model. J. Atmos. Sci., 67, 1438−1455, https://doi.org/10.1175/2010JAS3327.1.
Wang, S. G., F. Q. Zhang, and C. Snyder, 2009: Generation and propagation of inertia-gravity waves from vortex dipoles and jets. J. Atmos. Sci., 66, 1294−1314, https://doi.org/10.1175/2008JAS2830.1.
Wang, S. G., F. Q. Zhang, and C. C. Epifanio, 2010: Forced gravity wave response near the jet exit region in a linear model. Quart. J. Roy. Meteor. Soc., 136, 1773−1787, https://doi.org/10.1002/qj.676.
Wei, J. H., and F. Q. Zhang, 2014: Mesoscale gravity waves in moist baroclinic jet-front systems. J. Atmos. Sci., 71, 929−952, https://doi.org/10.1175/JAS-D-13-0171.1.
Wei, J. H., and F. Q. Zhang, 2015: Tracking gravity waves in moist baroclinic jet-front systems. Journal of Advances in Modeling Earth Systems, 7, 67−91, https://doi.org/10.1002/2014MS000395.
Wei, J. H., F. Q. Zhang, and J. H. Richter, 2016: An analysis of gravity wave spectral characteristics in moist baroclinic jet-front systems. J. Atmos. Sci., 73, 3133−3155, https://doi.org/10.1175/JAS-D-15-0316.1.
Weng, Y. H., and F. Q. Zhang, 2016: Advances in convection-permitting tropical cyclone analysis and prediction through EnKF assimilation of reconnaissance aircraft observations. J. Meteor. Soc. Japan, 94, 345−358, https://doi.org/10.2151/jmsj.2016-018.
Ying, Y., and F. Q. Zhang, 2015: An adaptive covariance relaxation method for ensemble data assimilation. Quart. J. Roy. Meteor. Soc., 141, 2898−2906, https://doi.org/10.1002/qj.2576.
Zhang, F. Q., 2004: Generation of mesoscale gravity waves in upper-tropospheric jet-front systems. J. Atmos. Sci., 61, 440−457, https://doi.org/10.1175/1520-0469(2004)061<0440:GOMGWI>2.0.CO;2.
Zhang, F. Q., 2005: Dynamics and structure of mesoscale error covariance of a winter cyclone estimated through short-range ensemble forecasts. Mon. Wea. Rev., 133, 2876−2893, https://doi.org/10.1175/MWR3009.1.
Zhang, F. Q., and J. A. Sippel, 2009: Effects of moist convection on hurricane predictability. J. Atmos. Sci., 66, 1944−1961, https://doi.org/10.1175/2009JAS2824.1.
Zhang, F. Q., and D. D. Tao, 2013: Effects of vertical wind shear on the predictability of tropical cyclones. J. Atmos. Sci., 70, 975−983, https://doi.org/10.1175/JAS-D-12-0133.1.
Zhang, F. Q., and Y. H. Weng, 2015: Predicting hurricane intensity and associated hazards: A five-year real-time forecast experiment with assimilation of airborne Doppler radar observations. Bull. Amer. Meteor. Soc., 96, 25−32, https://doi.org/10.1175/BAMS-D-13-00231.1.
Zhang, F. Q., C. Snyder, and R. Rotunno, 2002: Mesoscale predictability of the “surprise” snowstorm of 24−25 January 2000. Mon. Wea. Rev., 130, 1617−1632, https://doi.org/10.1175/1520-0493(2002)130<1617:MPOTSS>2.0.CO;2.
Zhang, F. Q., C. Snyder, and R. Rotunno, 2003: Effects of moist convection on mesoscale predictability. J. Atmos. Sci., 60, 1173−1185, https://doi.org/10.1175/1520-0469(2003)060<1173:EOMCOM>2.0.CO;2.
Zhang, F. Q., C. Snyder, and J. Z. Sun, 2004: Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter. Mon. Wea. Rev., 132, 1238−1253, https://doi.org/10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2.
Zhang, F. Q., A. M. Odins, and J. W. Nielsen-Gammon, 2006: Mesoscale predictability of an extreme warm-season precipitation event. Wea. Forecasting, 21, 149−166, https://doi.org/10.1175/WAF909.1.
Zhang, F. Q., N. F. Bei, R. Rotunno, C. Snyder, and C. C. Epifanio, 2007: Mesoscale predictability of moist baroclinic waves: Cloud-permitting experiments and multistage error growth dynamics. J. Atmos. Sci., 64, 3579−3594, https://doi.org/10.1175/JAS4028.1.
Zhang, F. Q., Y. H. Weng, J. A. Sippel, Z. Y. Meng, and C. H. Bishop, 2009a: Cloud-resolving hurricane initialization and prediction through assimilation of Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 137, 2105−2125, https://doi.org/10.1175/2009MWR2645.1.
Zhang, F. Q., M. Zhang, and J. A. Hansen, 2009b: Coupling ensemble Kalman filter with four-dimensional variational data assimilation. Adv. Atmos. Sci., 26, 1−8, https://doi.org/10.1007/s00376-009-0001-8.
Zhang, F. Q., Y. H. Weng, J. F. Gamache, and F. D. Marks, 2011: Performance of convection- permitting hurricane initialization and prediction during 2008−2010 with ensemble data assimilation of inner-core airborne Doppler radar observations. Geophys. Res. Lett., 38, L15810, https://doi.org/10.1029/2011GL048469.
Zhang, F. Q., M. Minamide, and E. E. Clothiaux, 2016: Potential impacts of assimilating all-sky infrared satellite radiances from GOES-R on convection-permitting analysis and prediction of tropical cyclones. Geophys. Res. Lett., 43, 2954−2963, https://doi.org/10.1002/2016GL068468.
Zhang, F. Q., Y. Q. Sun, L. Magnusson, R. Buizza, S. J. Lin, J. H. Chen, and K. Emanuel, 2019a: What is the predictability limit of midlatitude weather. J. Atmos. Sci., 76, 1077−1091, https://doi.org/10.1175/JAS-D-18-0269.1.
Zhang, F. Q., M. Minamide, R. G. Nystrom, X. C. Chen, S. J. Lin, and L. M. Harris, 2019b: Improving Harvey forecasts with next-generation weather satellites: Advanced hurricane analysis and prediction with assimilation of GOES-R All-Sky Radiances. Bull. Amer. Meteor. Soc., 100, 1217−1222, https://doi.org/10.1175/BAMS-D-18-0149.1.
Zhang, M., and F. Q. Zhang, 2012: E4DVar: Coupling an ensemble Kalman filter with four-dimensional variational data assimilation in a limited-area weather prediction model. Mon. Wea. Rev., 140, 587−600, https://doi.org/10.1175/MWR-D-11-00023.1.