Bueh, C., J. B. Peng, D. W. Lin, and B. M. Chen, 2022: On the two successive supercold waves straddling the end of 2020 and the beginning of 2021,. Adv. Atmos. Sci., 39, 591−608, https://doi.org/10.1007/s00376-021-1107-x.
Chen, W., X. Q. Lan, L. Wang, and Y. Ma, 2013: The combined effects of the ENSO and the Arctic Oscillation on the winter climate anomalies in East Asia. Chinese Science Bulletin, 58, 1355−1362, https://doi.org/10.1007/s11434-012-5654-5.
Cohen, J., J. Foster, M. Barlow, K. Saito, and J. Jones, 2010: Winter 2009-2010: A case study of an extreme Arctic Oscillation event. Geophys. Res. Lett., 37, L17707, https://doi.org/10.1029/2010GL044256.
Dai, G. K., C. X. Li, Z. Han, D. H. Luo, and Y. Yao, 2022: The nature and predictability of the East Asian extreme cold events of 2020/21,. Adv. Atmos. Sci., 39, 566−575, https://doi.org/10.1007/s00376-021-1057-3.
Dominguez, F., P. Kumar, X.-Z. Liang, and M. F. Ting, 2006: Impact of atmospheric moisture storage on precipitation recycling. J. Climate, 19, 1513−1530, https://doi.org/10.1175/JCLI3691.1.
Hersbach, H., and D. Dee, 2016: ERA5 reanalysis is in production. ECMWF Newsletter, No. 147.
Hovmöller, E., 1948: North-South cross section of temperature, relative humidity, and wind in a well-marked zonal current over western europe. J. Meteorol., 5, 67−69, https://doi.org/10.1175/1520-0469(1948)005<0067:NSCSOT>2.0.CO;2.
Iles, C., and G. Hegerl, 2017: Role of the North Atlantic Oscillation in decadal temperature trends. Environmental Research Letters, 12, 114010, https://doi.org/10.1088/1748-9326/aa9152.
Li, J. P., and J. X. L. Wang, 2003: A new North Atlantic Oscillation index and its variability. Adv. Atmos. Sci., 20, 661−676, https://doi.org/10.1007/BF02915394.
Li, J. P., T. J. Xie, X. X. Tang, H. Wang, C. Sun, J. Feng, F. Zheng, and R. Q. Ding, 2022: Influence of the NAO on wintertime surface air temperature over East Asia: Multidecadal variability and decadal prediction. Adv. Atmos. Sci., 39, 625−642, https://doi.org/10.1007/s00376-021-1075-1.
Li, Y., J. Y. Zhang, Y. Lu, J. L. Zhu, and J. Feng, 2019: Characteristics of transient eddy fluxes during blocking highs associated with two cold events in China. Atmosphere, 10, 235, https://doi.org/10.3390/atmos10050235.
Luo, B. H., D. H. Luo, A. G. Dai, I. Simmonds, and L. X. Wu, 2021: A connection of winter eurasian cold anomaly to the modulation of ural blocking by ENSO. Geophys. Res. Lett., 48, e2021GL094304, https://doi.org/10.1029/2021GL094304.
Luo, D. H., Y. Q. Xiao, Y. Yao, A. G. Dai, I. Simmonds, and C. L. E. Franzke, 2016a: Impact of ural blocking on winter warm arctic-cold eurasian anomalies. Part I: Blocking-induced amplification. J. Climate, 29, 3925−3947, https://doi.org/10.1175/JCLI-D-15-0611.1.
Luo, D. H., Y. Q. Xiao, Y. N. Diao, A. G. Dai, C. L. E. Franzke, and I. Simmonds, 2016b: Impact of ural blocking on winter warm arctic-cold eurasian anomalies. Part II: The link to the North Atlantic oscillation. J. Climate, 29, 3949−3971, https://doi.org/10.1175/JCLI-D-15-0612.1.
Luo, D. H., X. D. Chen, and S. B. Feldstein, 2018: Linear and nonlinear dynamics of North Atlantic oscillations: A new thinking of symmetry breaking. J. Atmos. Sci., 75, 1955−1977, https://doi.org/10.1175/JAS-D-17-0274.1.
Luo, D. H., W. Q. Zhang, L. H. Zhong, and A. G. Dai, 2019a: A nonlinear theory of atmospheric blocking: A potential vorticity gradient view. J. Atmos. Sci., 76, 2399−2427, https://doi.org/10.1175/JAS-D-18-0324.1.
Luo, D. H., X. D. Chen, J. Overland, I. Simmonds, Y. T. Wu, and P. F. Zhang, 2019b: Weakened potential vorticity barrier linked to recent winter arctic sea ice loss and midlatitude cold extremes. J. Climate, 32, 4235−4261, https://doi.org/10.1175/JCLI-D-18-0449.1.
Ma, S. M., and C. W. Zhu, 2021: Atmospheric circulation regime causing winter temperature whiplash events in North China. International Journal of Climatology, 41, 917−933, https://doi.org/10.1002/joc.6706.
Ma, S. M., and C. W. Zhu, 2023: Subseasonal swing of cold and warm extremes between Eurasia and North America in winter of 2020/21: initiation and physical process. Environ Res Lett, 18, 014023. https://doi.org/10.1088/1748-9326/acaabf.
Mu, M., D. H. Luo, and F. Zheng, 2022: Preface to the special issue on extreme cold events from East Asia to North America in winter 2020/21,. Adv. Atmos. Sci., 39, 543−545, https://doi.org/10.1007/s00376-021-1004-3.
Park, T.-W., C.-H. Ho, and S. Yang, 2011: Relationship between the Arctic Oscillation and Cold Surges over East Asia. J. Climate, 24, 68−83, https://doi.org/10.1175/2010JCLI3529.1.
Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608−627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.
Tibaldi, S., and F. Molteni, 1990: On the operational predictability of blocking. Tellus A, 42, 343−365, https://doi.org/10.1034/j.1600-0870.1990.t01-2-00003.x.
Yao, Y., D. H. Luo, A. G. Dai, and I. Simmonds, 2017: Increased quasi stationarity and persistence of winter ural blocking and eurasian extreme cold events in response to arctic warming. Part I: Insights from observational analyses. J. Climate, 30, 3549−3568, https://doi.org/10.1175/JCLI-D-16-0261.1.
Yao, Y., W. Q. Zhang, D. H. Luo, L. H. Zhong, and L. Pei, 2022: Seasonal cumulative effect of ural blocking episodes on the frequent cold events in China during the early winter of 2020/21,. Adv. Atmos. Sci., 39, 609−624, https://doi.org/10.1007/s00376-021-1100-4.
Yu, M. J., S. M. Ma, and C. W. Zhu, 2022a: The alternating change of cold and warm extremes over North Asia during winter 2020/21: Effect of the annual cycle anomaly. Geophys. Res. Lett., 49, e2021GL097233, https://doi.org/10.1029/2021GL097233.
Yu, Y. Y., Y. F. Li, R. C. Ren, M. Cai, Z. Y. Guan, and W. Huang, 2022b: An isentropic mass circulation view on the extreme cold events in the 2020/21 winter. Adv. Atmos. Sci., 39, 643−657, https://doi.org/10.1007/s00376-021-1289-2.
Zhang, R. N., R. H. Zhang, and G. K. Dai, 2022a: Intraseasonal contributions of Arctic sea-ice loss and Pacific decadal oscillation to a century cold event during early 2020/21 winter. Climate Dyn., 58, 741−758, https://doi.org/10.1007/s00382-021-05931-5.
Zhang, X. D., Y. F. Fu, Z. Han, J. E. Overland, A. Rinke, H. Tang, T. Vihma, and M. Y. Wang, 2022b: Extreme cold events from East Asia to North America in winter 2020/21: Comparisons, causes, and future implications. Adv. Atmos. Sci., 39, 553−565, https://doi.org/10.1007/s00376-021-1229-1.
Zhang, Y. X., D. Si, Y. H. Ding, D. B. Jiang, Q. Q. Li, and G. F. Wang, 2022c: Influence of major stratospheric sudden warming on the unprecedented cold wave in East Asia in January 2021,. Adv. Atmos. Sci., 39, 576−590, https://doi.org/10.1007/s00376-022-1318-9.
Zheng, F., and Coauthors, 2022a: The predictability of ocean environments that contributed to the 2020/21 extreme cold events in China: 2020/21 La Niña and 2020 arctic sea ice loss. Adv. Atmos. Sci., 39, 658−672, https://doi.org/10.1007/s00376-021-1130-y.
Zheng, F., and Coauthors, 2022b: The 2020/21 Extremely cold winter in china influenced by the synergistic effect of La Niña and warm arctic. Adv. Atmos. Sci., 39, 546−552, https://doi.org/10.1007/s00376-021-1033-y.
Zheng, F., and Coauthors, 2022c: Can eurasia experience a cold winter under a third-year La Niña in 2022/23? Adv. Atmos. Sci., in press, https://doi.org/10.1007/s00376-022-2331-8.
Zhong, L. H., L. J. Hua, and D. H. Luo, 2018: Local and external moisture sources for the arctic warming over the barents-kara seas. J. Climate, 31, 1963−1982, https://doi.org/10.1175/JCLI-D-17-0203.1.
Zhou, T. J., and Coauthors, 2022: 2021: A Year of Unprecedented Climate Extremes in Eastern Asia, North America, and Europe. Adv Atmos Sci, 39, 1598−1607, https://doi.org/10.1007/s00376-022-2063-9.