Alpert, P., H. Messer, and N. David, 2016: Meteorology: Mobile networks aid weather monitoring. Nature, 537, 617, https://doi.org/10.1038/537617e.
Atlas, D., and C. W. Ulbrich, 1977: Path- and area- integrated rainfall measurement by microwave attenuation in the 1−3 cm band. J. Appl. Meteorol., 16, 1322−1331, https://doi.org/10.1175/1520-0450(1977)016<1322:PAAIRM>2.0.CO;2.
Atlas, D., R. C. Srivastava, and R. S. Sekhon, 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys., 11, 1−35, https://doi.org/10.1029/RG011i001p00001.
Berne, A., G. Delrieu, J.-D. Creutin, and C. Obled, 2004: Temporal and spatial resolution of rainfall measurements required for urban hydrology. J. Hydrol., 299, 166−179, https://doi.org/10.1016/S0022-1694(04)00363-4.
Bianchi, B., P. J. V. Leeuwen, R. J. Hogan, and A. Berne, 2013: A variational approach to retrieve rain rate by combining information from rain gauges, radars, and microwave links. Journal of Hydrometeorology, 14, 1897−1909, https://doi.org/10.1175/JHM-D-12-094.1.
Chen, J.-Y., S. Trömel, A. Ryzhkov, and C. Simmer, 2021: Assessing the benefits of specific attenuation for quantitative precipitation estimation with a C-band radar network. Journal of Hydrometeorology, 22, 2617−2631, https://doi.org/10.1175/JHM-D-20-0299.1.
Chwala, C., and H. Kunstmann, 2019: Commercial microwave link networks for rainfall observation: Assessment of the current status and future challenges. WIREs Water, 6, e1337, https://doi.org/10.1002/wat2.1337.
Chwala, C., F. Keis, and H. Kunstmann, 2016: Real-time data acquisition of commercial microwave link networks for hydrometeorological applications. Atmospheric Measurement Techniques, 9, 991−999, https://doi.org/10.5194/amt-9-991-2016.
D’Amico, M., A. Manzoni, and G. L. Solazzi, 2016: Use of operational microwave link measurements for the tomographic reconstruction of 2-D maps of accumulated rainfall. IEEE Geoscience and Remote Sensing Letters, 13, 1827−1831, https://doi.org/10.1109/LGRS.2016.2614326.
David, N., O. Sendik, H. Messer, and P. Alpert, 2015: Cellular network infrastructure: The future of fog monitoring? Bull. Amer. Meteor. Soc., 96, 1687−1698, https://doi.org/10.1175/BAMS-D-13-00292.1.
Doumounia, A., M. Gosset, F. Cazenave, M. Kacou, and F. Zougmore, 2014: Rainfall monitoring based on microwave links from cellular telecommunication networks: First results from a West African test bed. Geophys. Res. Lett., 41, 6016−6022, https://doi.org/10.1002/2014GL060724.
Eshel, A., J. Ostrometzky, S. Gat, P. Alpert, and H. Messer, 2020: Spatial reconstruction of rain fields from wireless telecommunication networks—Scenario-dependent analysis of IDW-based algorithms. IEEE Geoscience and Remote Sensing Letters, 17, 770−774, https://doi.org/10.1109/LGRS.2019.2935348.
Fencl, M., M. Dohnal, J. Rieckermann, and V. Bareš, 2017: Gauge-adjusted rainfall estimates from commercial microwave links. Hydrology and Earth System Sciences, 21, 617−634, https://doi.org/10.5194/hess-21-617-2017.
Fencl, M., M. Dohnal, P. Valtr, M. Grabner, and V. Bareš, 2020: Atmospheric observations with E-band microwave links--Challenges and opportunities. Atmospheric Measurement Techniques, 13, 6559−6578, https://doi.org/10.5194/amt-13-6559-2020.
Gosset, M., and Coauthors, 2016: Improving rainfall measurement in gauge poor regions thanks to mobile telecommunication networks. Bull. Amer. Meteor. Soc., 97, ES49−ES51, https://doi.org/10.1175/BAMS-D-15-00164.1.
Graf, M., C. Chwala, J. Polz, and H. Kunstmann, 2020: Rainfall estimation from a German-wide commercial microwave link network: Optimized processing and validation for 1 year of data. Hydrology Earth System Sciences, 24, 2931−2950, https://doi.org/10.5194/hess-24-2931-2020.
Haese, B., S. Hörning, C. Chwala, A. Bárdossy, B. Schalge, and H. Kunstmann, 2017: Stochastic reconstruction and interpolation of precipitation fields using combined information of commercial microwave links and rain gauges. Water Resour. Res., 53, 10 740−10 756, https://doi.org/10.1002/2017WR021015.
Han, C. Z., Y. H. Bi, S. Duan, and G. P. Lu, 2019: Rain rate retrieval test from 25-GHz, 28-GHz, and 38-GHz millimeter-wave link measurement in Beijing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12, 2835−2847, https://doi.org/10.1109/JSTARS.2019.2918507.
Han, C. Z., J. Huo, Q. Q. Gao, G. Y. Su, and H. Wang, 2020: Rainfall monitoring based on next-generation millimeter-wave backhaul technologies in a dense urban environment. Remote Sensing, 12, 1045, https://doi.org/10.3390/rs12061045.
Han, C. Z., and Coauthors, 2021: Characteristics of rain-induced attenuation over signal links at frequency ranges of 25 and 38 GHz observed in Beijing. Remote Sensing, 13, 2156, https://doi.org/10.3390/rs13112156.
He, B. S., X. C. Liu, S. Hu, K. Song, and T. C. Gao, 2019: Use of the C-band microwave link to distinguish between rainy and dry periods. Advances in Meteorology, 2019, 3428786, https://doi.org/10.1155/2019/3428786.
Hou, A. Y., and Coauthors, 2014: The global precipitation measurement mission. Bull. Amer. Meteor. Soc., 95, 701−722, https://doi.org/10.1175/BAMS-D-13-00164.1.
International Telecommunication Union, 2005: Specific attenuation model for rain for use in prediction methods. Recommendation ITU-R P.838-3. [Available online from https://www.itu.int/rec/R-REC-P.838-3-200503-I/en].
Jaffrain, J., and A. Berne, 2011: Experimental quantification of the sampling uncertainty associated with measurements from PARSIVEL disdrometers. Journal of Hydrometeorology, 12, 352−370, https://doi.org/10.1175/2010JHM1244.1.
Leijnse, H., R. Uijlenhoet, and J. N. M. Stricker, 2007a: Hydrometeorological application of a microwave link: 1. Evaporation. Water Resour. Res., 43, W04416, https://doi.org/10.1029/2006WR004988.
Leijnse, H., R. Uijlenhoet, and J. N. M. Stricker, 2007b: Rainfall measurement using radio links from cellular communication networks. Water Resour. Res., 43, W03201, https://doi.org/10.1029/2006WR005631.
Liberman, Y., R. Samuels, P. Alpert, and H. Messer, 2014: New algorithm for integration between wireless microwave sensor network and radar for improved rainfall measurement and mapping. Atmospheric Measurement Techniques, 7, 3549−3563, https://doi.org/10.5194/amt-7-3549-2014.
Liu, X. C., T. C. Gao, J. Qin, and L. Liu, 2010: Effects analysis of rainfall on microwave transmission characteristics. Acta Physica Sinica, 59, 2156−2162, https://doi.org/10.7498/aps.59.2156. (in Chinese with English abstract
Liu, X. C., B. S. He, S. J. Zhao, S. Hu, and L. Liu, 2019: Comparative measurement of rainfall with a precipitation micro-physical characteristics sensor, a 2D video disdrometer, an OTT PARSIVEL disdrometer, and a rain gauge. Atmospheric Research, 229, 100−114, https://doi.org/10.1016/j.atmosres.2019.06.020.
Löffler-Mang, M., and J. Joss, 2000: An optical disdrometer for measuring size and velocity of hydrometeors. J. Atmos. Oceanic Technol., 17, 130−139, https://doi.org/10.1175/1520-0426(2000)017<0130:AODFMS>2.0.CO;2.
Luo, Y. L., J. H. Zhang, M. Yu, X. D. Liang, R. D. Xia, Y. Y. Gao, X. Y. Gao, and J. F. Yin, 2023: On the influences of urbanization on the extreme rainfall over Zhengzhou on 20 July 2021: A convection-permitting ensemble modeling study. Adv. Atmos. Sci., 40, 393−409, https://doi.org/10.1007/s00376-022-2048-8.
Messer, H., A. Zinevich, and P. Alpert, 2006: Environmental monitoring by wireless communication networks. Science, 312, 713, https://doi.org/10.1126/science.1120034.
Mishchenko, M. I., G. Videen, V. A. Babenko, N. G. Khlebtsov, and T. Wriedt, 2004: T-matrix theory of electromagnetic scattering by particles and its applications: A comprehensive reference database. Journal of Quantitative Spectroscopy & Radiative Transfer, 88, 357−406, https://doi.org/10.1016/j.jqsrt.2004.05.002.
Ostrometzky, J., and H. Messer, 2018: Dynamic determination of the baseline level in microwave links for rain monitoring from minimum attenuation values. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11, 24−33, https://doi.org/10.1109/JSTARS.2017.2752902.
Ostrometzky, J., D. Cherkassky, and H. Messer, 2015: Accumulated mixed precipitation estimation using measurements from multiple microwave links. Advances in Meteorology, 2015, 707646, https://doi.org/10.1155/2015/707646.
Overeem, A., H. Leijnse, and R. Uijlenhoet, 2013: Country-wide rainfall maps from cellular communication networks. Proceedings of the National Academy of Sciences of the United States of America, 110, 2741−2745, https://doi.org/10.1073/pnas.1217961110.
Overeem, A., H. Leijnse, and R. Uijlenhoet, 2016: Retrieval algorithm for rainfall mapping from microwave links in a cellular communication network. Atmospheric Measurement Techniques, 9, 2425−2444, https://doi.org/10.5194/amt-9-2425-2016.
Polz, J., C. Chwala, M. Graf, and H. Kunstmann, 2020: Rain event detection in commercial microwave link attenuation data using convolutional neural networks. Atmospheric Measurement Techniques, 13, 3835−3853, https://doi.org/10.5194/amt-13-3835-2020.
Pu, K., X. C. Liu, and H. B. He, 2020a: Wet antenna attenuation model of E-band microwave links based on the LSTM algorithm. IEEE Antennas and Wireless Propagation Letters, 19, 1586−1590, https://doi.org/10.1109/LAWP.2020.3011463.
Pu, K., X. C. Liu, M. H. Xian, and T. C. Gao, 2020b: Machine learning classification of rainfall types based on the differential attenuation of multiple frequency microwave links. IEEE Trans. Geosci. Remote Sens., 58, 6888−6899, https://doi.org/10.1109/TGRS.2020.2977393.
Pu, K., X. C. Liu, S. Hu, and T. C. Gao, 2020c: Hydrometeor identification using multiple-frequency microwave links: A numerical simulation. Remote Sensing, 12, 2158, https://doi.org/10.3390/rs12132158.
Schleiss, M., and A. Berne, 2010: Identification of dry and rainy periods using telecommunication microwave links. IEEE Geoscience and Remote Sensing Letters, 7, 611−615, https://doi.org/10.1109/LGRS.2010.2043052.
Schleiss, M., J. Jaffrain, and A. Berne, 2011: Statistical analysis of rainfall intermittency at small spatial and temporal scales. Geophys. Res. Lett., 38, L18403, https://doi.org/10.1029/2011GL049000.
Schleiss, M., J. Rieckermann, and A. Berne, 2013: Quantification and modeling of wet-antenna attenuation for commercial microwave links. IEEE Geoscience and Remote Sensing Letters, 10, 1195−1199, https://doi.org/10.1109/LGRS.2012.2236074.
Song, K., X. C. Liu, and T. C. Gao, 2021: Real-time rainfall estimation using microwave links: A case study in East China during the plum rain season in 2020. Sensors, 21, 858, https://doi.org/10.3390/s21030858.
Song, K., X. C. Liu, T. C. Gao, and B. S. He, 2019: Rainfall estimation using a microwave link based on an improved rain-induced attenuation model. Remote Sensing Letters, 10, 1057−1066, https://doi.org/10.1080/2150704X.2019.1648902.
Song, K., X. C. Liu, T. C. Gao, M. Yin, and B. S. He, 2020a: The feasibility analysis of cellphone signal to detect the rain: Experimental study. IEEE Geoscience and Remote Sensing Letters, 17, 1158−1162, https://doi.org/10.1109/LGRS.2019.2940854.
Song, K., X. C. Liu, M. Z. Zou, D. Zhou, H. N. Wu, and F. Ji, 2020b: Experimental study of detecting rainfall using microwave links: Classification of wet and dry periods. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 5264−5271, https://doi.org/10.1109/JSTARS.2020.3021555.
Tollefson, J., 2017: Mobile-phone signals bolster street-level rain forecasts. Nature, 544, 146−147, https://doi.org/10.1038/nature.2017.21799.
Van Leth, T. C., H. Leijnse, A. Overeem, and R. Uijlenhoet, 2020: Estimating raindrop size distributions using microwave link measurements: Potential and limitations. Atmospheric Measurement Techniques, 13, 1797−1815, https://doi.org/10.5194/amt-13-1797-2020.
Wang, T. J., and Coauthors, 2019: Review of Chinese atmospheric science research over the past 70 years: Atmospheric physics and atmospheric environment. Science China Earth Sciences, 62, 1903−1945, https://doi.org/10.1007/s11430-019-9536-1.
Wang, Z., M. Schleiss, J. Jaffrain, A. Berne, and J. Rieckermann, 2012: Using Markov switching models to infer dry and rainy periods from telecommunication microwave link signals. Atmospheric Measurement Techniques, 5, 1847−1859, https://doi.org/10.5194/amt-5-1847-2012.
Xian, M. H., X. C. Liu, K. Song, and T. C. Gao, 2020a: Reconstruction and nowcasting of rainfall field by oblique earth-space links network: Preliminary results from numerical simulation. Remote Sensing, 12, 3598, https://doi.org/10.3390/rs12213598.
Xian, M. H., X. C. Liu, M. Yin, K. Song, S. J. Zhao, and T. C. Gao, 2020b: Rainfall monitoring based on machine learning by earth-space link in the Ku band. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 3656−3668, https://doi.org/10.1109/JSTARS.2020.3004375.
Zhang, Q. H., C.-P. Ng, K. Dai, J. Xu, J. Tang, J. Z. Sun, and M. Mu, 2021: Lessons learned from the tragedy during the 100 km Ultramarathon Race in Baiyin, Gansu Province on 22 May 2021. Adv. Atmos. Sci., 38, 1803−1810, https://doi.org/10.1007/s00376-021-1246-0.
Zhang, W. X., and T. J. Zhou, 2020: Increasing impacts from extreme precipitation on population over China with global warming. Science Bulletin, 65, 243−252, https://doi.org/10.1016/j.scib.2019.12.002.
Zhao, K., and Coauthors, 2019: Recent progress in dual-polarization radar research and applications in China. Adv. Atmos. Sci., 36, 961−974, https://doi.org/10.1007/s00376-019-9057-2.
Zinevich, A., P. Alpert, and H. Messer, 2008: Estimation of rainfall fields using commercial microwave communication networks of variable density. Advances in Water Resources, 31, 1470−1480, https://doi.org/10.1016/j.advwatres.2008.03.003.