Barthlott, C., and S. Davolio, 2016: Mechanisms initiating heavy precipitation over Italy during HyMeX Special Observation Period 1: A numerical case study using two mesoscale models. Quart. J. Roy. Meteor. Soc., 142, 238−258, https://doi.org/10.1002/qj.2630.
Bluestein, H. B., and M. H. Jain, 1985: Formation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the spring. J. Atmos. Sci., 42, 1711−1732, https://doi.org/10.1175/1520-0469(1985)042<1711:FOMLOP>2.0.CO;2.
Bresson, E., V. Ducrocq, O. Nuissier, D. Ricard, and C. de Saint-Aubin, 2012: Idealized numerical simulations of quasi-stationary convective systems over the Northwestern Mediterranean complex terrain. Quart. J. Roy. Meteor. Soc., 138, 1751−1763, https://doi.org/10.1002/qj.1911.
Chen, T. J. G., and C. P. Chang, 1980: The structure and vorticity budget of an early summer monsoon trough (Mei-Yu) over southeastern China and Japan. Mon. Wea. Rev., 108, 942−953, https://doi.org/ 10.1175/1520-0493(1980)108<09 42:TSAVBO>2.0.CO;2.
Corfidi, S. F., 2003: Cold pools and MCS propagation: Forecasting the motion of downwind-developing MCSs. Wea. Forecasting, 18, 997−1017, https://doi.org/10.1175/1520-0434(2003)018<0997:CPAMPF>2.0.CO;2.
Dahl, N., and M. Xue, 2016: Prediction of the 14 June 2010 Oklahoma City Extreme precipitation and flooding event in a multiphysics multi-initial-conditions storm-scale ensemble forecasting system. Wea. Forecasting, 31, 1215−1246, https://doi.org/10.1175/WAF-D-15-0116.1.
Davolio, S., A. Volonté, A. Manzato, A. Pucillo, A. Cicogna, and M. E. Ferrario, 2016: Mechanisms producing different precipitation patterns over North-Eastern Italy: Insights from HyMeX-SOP1 and previous events. Quart. J. Roy. Meteor. Soc., 142, 188−205, https://doi.org/10.1002/qj.2731.
Dawson II, D. T., M. Xue, J. A. Milbrandt, and M. K. Yau, 2010: Comparison of evaporation and cold pool development between single-moment and multimoment bulk microphysics schemes in idealized simulations of tornadic thunderstorms. Mon. Wea. Rev., 138, 1152−1171, https://doi.org/10.1175/2009MWR2956.1.
Ding, Y. H., 1992: Summer monsoon rainfalls in China. J. Meteor. Soc. Japan, 70, 373−396, https://doi.org/10.2151/jmsj1965.70.1B_373.
Ding, Y. H., and J. C. L. Chan, 2005: The East Asian summer monsoon: An overview. Meteorol. Atmos. Phys., 89, 117−142, https://doi.org/10.1007/s00703-005-0125-z.
Doswell III, C. A., H. E. Brooks, and R. A. Maddox, 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560−581, https://doi.org/10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2.
Ducrocq, V., O. Nuissier, D. Ricard, C. Lebeaupin, and T. Thouvenin, 2008: A numerical study of three catastrophic precipitating events over southern France. II: Mesoscale triggering and stationarity factors. Quart. J. Roy. Meteor. Soc., 134, 131−145, https://doi.org/10.1002/qj.199.
Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077−3107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.
Duffourg, F., K. O. Lee, V. Ducrocq, C. Flamant, P. Chazette, and Di Girolamo, 2018: Role of moisture patterns in the backbuilding formation of HyMeX IOP13 heavy precipitation systems. Quart. J. Roy. Meteor. Soc., 144, 291−303, https://doi.org/10.1002/qj.3201.
Grell, G. A., and D. Dévényi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, 1693, https://doi.org/10.1029/2002GL015311.
Houston, A. L., and R. B. Wilhelmson, 2007: Observational analysis of the 27 May 1997 central Texas Tornadic event. Part I: Prestorm environment and storm maintenance/propagation. Mon. Wea. Rev., 135, 701−726, https://doi.org/10.1175/MWR3300.1.
Houston, A. L., and R. B. Wilhelmson. 2012: The impact of airmass boundaries on the propagation of deep convection: A modeling-based study in a high-CAPE, low-shear environment. Mon. Wea. Rev., 140 , 167−183, https://doi.org/10.1175/MWR-D-10-05033.1.
Houze, R. A. Jr., B. F. Smull, and P. Dodge, 1990: Mesoscale organization of springtime rainstorms in Oklahoma. Mon. Wea. Rev., 118, 613−654, https://doi.org/10.1175/1520-0493(1990)118<0613:MOOSRI>2.0.CO;2.
Houze, R. A. Jr., W. Schmid, R. G. Fovell, and H.-H. Schiesser, 1993: Hailstorms in Switzerland: Left movers, right movers, and false hooks. Mon. Wea. Rev., 121, 3345−3370, https://doi.org/10.1175/1520-0493(1993)121<3345:HISLMR>2.0.CO;2.
Huang, H.-L., M.-J. Yang, and C.-H. Sui, 2014: Water budget and precipitation efficiency of typhoon Morakot (2009). J. Atmos. Sci., 71, 112−129, https://doi.org/10.1175/JAS-D-13-053.1.
Huang, Y. J., Y. B. Liu, Y. W. Liu, and J. C. Knievel, 2019: Budget analyses of a record-breaking rainfall event in the coastal metropolitan city of Guangzhou, China. J. Geophys. Res., 124, 9391−9406, https://doi.org/10.1029/2018jd030229.
Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927−945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.
Janjić, Z. I., 1996: The surface layer parameterization in the NCEP Eta Model. Preprints, 11th Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., 354−355.
Jeong, J. H., D. I. Lee, and C. C. Wang, 2016: Impact of the cold pool on mesoscale convective system–produced extreme rainfall over southeastern South Korea: 7 July 2009. Mon. Wea. Rev., 144, 3985−4006, https://doi.org/10.1175/MWR-D-16-0131.1.
Klemp, J. B., W. C. Skamarock, and J. Dudhia, 2007: Conservative split-explicit time integration methods for the compressible nonhydrostatic equations. Mon. Wea. Rev., 135, 2897−2913, https://doi.org/10.1175/MWR3440.1.
Li, H. Q., Y. J. Huang, S. Hu, N. G. Wu, X. T. Liu, and H. Xiao, 2021: Roles of terrain, surface roughness, and cold pool outflows in an extreme rainfall event over the coastal region of South China. J. Geophys. Res., 126, e2021JD035556. https://doi.org/10.1029/2021JD035556.
Lin, Y.-L., R. L. Deal, and M. S. Kulie, 1998: Mechanisms of cell regeneration, development, and propagation within a two-dimensional multicell storm. J. Atmos. Sci., 55, 1867−1886, https://doi.org/10.1175/1520-0469(1998)055<1867:MOCRDA>2.0.CO;2.
Luo, Y. L., Y. Gong, and D.-L. Zhang, 2014: Initiation and organizational modes of an extreme-rain-producing mesoscale convective system along a Mei-Yu front in East China. Mon. Wea. Rev., 142, 203−221, https://doi.org/10.1175/MWR-D-13-00111.1.
Maddox, R. A., C. F. Chappell, and L. R. Hoxit, 1979: Synoptic and meso- α scale aspects of flash flood events. Bull. Amer. Meteor. Soc., 60, 115−123, https://doi.org/10.1175/1520-0477-60.2.115.
Merritt, J. H., and J. M. Fritsch, 1984: On the movement of the heavy precipitation areas of mid-latitude mesoscale convective complexes. Preprints, 10th Conference on Weather Forecasting and Analysis, Boston, American Meteorological Society, 529−536.
Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated‐k model for the longwave. J. Geophys. Res., 102 , 16 663−16 682, https://doi.org/10.1029/97JD00237.
Moore, B. J., P. J. Neiman, F. M. Ralph, and F. E. Barthold, 2012: Physical processes associated with heavy flooding rainfall in Nashville, Tennessee, and vicinity during 1-2 May 2010: The role of an atmospheric river and mesoscale convective systems. Mon. Wea. Rev., 140, 358−378, https://doi.org/10.1175/MWR-D-11-00126.1.
Moore, J. T., F. H. Glass, C. E. Graves, S. M. Rochette, and M. J. Singer, 2003: The environment of warm-season elevated thunderstorms associated with heavy rainfall over the central United States. Wea. Forecasting, 18, 861−878, https://doi.org/10.1175/1520-0434(2003)018<0861:TEOWET>2.0.CO;2.
Parker, M. D., and R. H. Johnson, 2000: Organizational modes of midlatitude mesoscale convective systems. Mon. Wea. Rev., 128, 3413−3436, https://doi.org/10.1175/1520-0493(2001)129<3413:OMOMMC>2.0.CO;2.
Peters, J. M., and R. S. Schumacher, 2016: Dynamics governing a simulated mesoscale convective system with a training convective line. J. Atmos. Sci., 73, 2643−2664, https://doi.org/10.1175/JAS-D-15-0199.1.
Schumacher, R. S., and R. H. Johnson, 2005: Organization and environmental properties of extreme-rain-producing mesoscale convective systems. Mon. Wea. Rev., 133, 961−976, https://doi.org/10.1175/MWR2899.1.
Schumacher, R. S., and R. H. Johnson, 2009: Quasi-stationary, extreme-rain-producing convective systems associated with midlevel cyclonic circulations. Wea. Forecasting, 24, 555−574, https://doi.org/10.1175/2008WAF2222173.1.
Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers, 2007: A description of the advanced research WRF version 2. No. NCAR/TN-468+STR, 100 pp, http://dx.doi.org/10.5065/D6DZ069T.
Sui, C.-H., X. F. Li, and M.-J. Yang, 2007: On the definition of precipitation efficiency. J. Atmos. Sci., 64, 4506−4513, https://doi.org/10.1175/2007JAS2332.1.
Sun, J. Z., 2005: Initialization and numerical forecasting of a supercell storm observed during STEPS. Mon. Wea. Rev., 133, 793−813, https://doi.org/10.1175/MWR2887.1.
Tao, S.-Y., and Y.-H. Ding, 1981: Observational evidence of the influence of the Qinghai-Xizang (Tibet) plateau on the occurrence of heavy rain and severe convective storms in China. Bull. Amer. Meteor. Soc., 62, 23−30, https://doi.org/10.1175/1520-0477(1981)062<0023:OEOTIO>2.0.CO;2.
Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519−542, https://doi.org/10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.
Thompson, G., P. Field, R. Rasmussen, and B. Hall, 2006: A new bulk microphysical parameterization for WRF (& MM5). Proc. 7th Weather Research and Forecasting Model Workshop, 1−11.
Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 5095−5115, https://doi.org/10.1175/2008MWR2387.1.
Wang, C.-C., B.-K. Chiou, G. T.-J. Chen, H.-C. Kuo, and C.-H. Liu, 2016: A numerical study of back-building process in a quasistationary rainband with extreme rainfall over northern Taiwan during 11−12 June 2012. Atmospheric Chemistry and Physics, 16 , 12 359−12 382, https://doi.org/10.5194/acp-16-12359-2016.
Wang, H., Y. L. Luo, and B. J.-D. Jou, 2014: Initiation, maintenance, and properties of convection in an extreme rainfall event during SCMREX: Observational analysis. J. Geophys. Res., 119 , 13 206−13 232, https://doi.org/10.1002/2014JD022339.
Wang, Q. W., Y. Zhang, K. F. Zhu, Z. M. Tan, and M. Xue, 2021: A case study of the initiation of parallel convective lines back-building from the south side of a Mei-yu front over complex terrain. Adv. Atmos. Sci., 38, 717−736, https://doi.org/10.1007/s00376-020-0216-2.
Weisman, M. L., C. Evans, and L. Bosart, 2013: The 8 May 2009 superderecho: Analysis of a real-time explicit convective forecast. Wea. Forecasting, 28, 863−892, https://doi.org/10.1175/WAF-D-12-00023.1.
Wilson, J. W., N. A. Crook, C. K. Mueller, J. Sun, and M. Dixon, 1998: Nowcasting Thunderstorms: A Status Report. Bull. Amer. Meteor. Soc., 79, 2079−2100, https://doi.org/10.1175/1520-0477(1998)079<2079:NTASR>2.0.CO;2.
Xu, W. X., E. J. Zipser, Y.-L. Chen, C. T. Liu, Y.-C. Liou, W.-C. Lee, and B. J.-D. Jou, 2012: An orography-associated extreme rainfall event during TiMREX: Initiation, storm evolution, and maintenance. Mon. Wea. Rev., 140, 2555−2574, https://doi.org/10.1175/MWR-D-11-00208.1.
Xu, X., M. Xue, and Y. Wang. 2015: The genesis of mesovortices within a real-data simulation of a bow echo system. J. Atmos. Sci., 72 , 1963−1986, https://doi.org/10.1175/JAS-D-14-0209.1.
Zhai, G. Q., H. L. Zhang, H. F. Shen, P. J. Zhu, T. Su, and X. F. Li, 2015: Role of a meso-γ vortex in Meiyu torrential rainfall over the Hangzhou Bay, China: An observational study. Journal of Meteorological Research, 29, 966−980, https://doi.org/10.1007/s13351-015-5029-3.
Zheng, Y. G., M. Xue, B. Li, J. Chen, and Z. Y. Tao, 2016: Spatial characteristics of extreme rainfall over China with hourly through 24-hour accumulation periods based on national-level hourly rain gauge data. Adv. Atmos. Sci., 33, 1218−1232, https://doi.org/10.1007/s00376-016-6128-5.