An, Z. S., and Coauthors, 2019: Severe haze in northern China: A synergy of anthropogenic emissions and atmospheric processes. Proceedings of the National Academy of Sciences of the United States of America, 116(18), 8657−8666, https://doi.org/10.1073/pnas.1900125116.
Bei, N. F., and Coauthors, 2016a: Typical synoptic situations and their impacts on the wintertime air pollution in the Guanzhong Basin, China. Atmospheric Chemistry and Physics, 16, 7373−7387, https://doi.org/10.5194/acp-16-7373-2016.
Bei, N. F., B. Xiao, N. Meng, and T. Feng, 2016b: Critical role of meteorological conditions in a persistent haze episode in the Guanzhong Basin, China. Science of The Total Environment, 550, 273−284, https://doi.org/10.1016/j.scitotenv.2015.12.159.
Binkowski, F. S., and S. J. Roselle, 2003: Models-3 Community Multiscale Air Quality (CMAQ) model aerosol component 1. Model description. Journal of Geophysical Research, 108, 4183, https://doi.org/10.1029/2001JD001409.
Cao, J. J., C. S. Zhu, J. C. Chow, J. G. Watson, Y. M. Han, G. H. Wang, Z. X. Shen, and Z. S. An, 2009: Black carbon relationships with emissions and meteorology in Xi’an, China. Atmospheric Research, 94, 194−202, https://doi.org/10.1016/j.atmosres.2009.05.009.
Cao, J. J., Q. Y. Wang, J. C. Chow, J. G. Watson, X. X. Tie, Z. X. Shen, P. Wang, and Z. S. An, 2012: Impacts of aerosol compositions on visibility impairment in Xi’an, China. Atmospheric Environment, 59, 559−566, https://doi.org/10.1016/j.atmosenv.2012.05.036.
Chou, M. D., and M. J. Suarez, 1999: A solar radiation parameterization for atmospheric studies. NASA/TM-1999-104606.
Chou, M. D., M. J. Suarez, X. Z. Liang, and M. H. H Yan, 2001: A thermal infrared radiation parameterization for atmospheric studies. NASA/TM-2001-104606.
Ding, Y. H., P. Wu, Y. J. Liu, and Y. F. Song, 2017: Environmental and dynamic conditions for the occurrence of persistent haze events in North China. Engineering, 3, 266−271, https://doi.org/10.1016/j.eng.2017.01.009.
Foley, K., and Coauthors, 2010: Incremental testing of the Community Multiscale Air Quality (CMAQ) modeling system version 4.7. Geoscientific Model Development, 3, 205−226, https://doi.org/10.5194/gmd-3-205-2010.
Gao, M., G. R. Carmichael, Y. Wang, P. E. Saide, M. Yu, J. Xin, Z. Liu, and Z. Wang, 2016: Modeling study of the 2010 regional haze event in the North China Plain. Atmospheric Chemistry and Physics, 16, 1673−1691, https://doi.org/10.5194/acp-16-1673-2016.
Gao, Y., M. Zhang, Z. Liu, L. Wang, P. Wang, X. Xia, M. Tao, and L. Zhu, 2015: Modeling the feedback between aerosol and meteorological variables in the atmospheric boundary layer during a severe fog-haze event over the North China Plain. Atmospheric Chemistry and Physics, 15, 4279−4295, https://doi.org/10.5194/acp-15-4279-2015.
Grell, G. A., S. E. Peckham, R. Schmitz, S. A. McKeen, G. Frost, W. C. Skamarock, and B. Eder, 2005: Fully coupled “online” chemistry within the WRF model. Atmospheric Environment, 39, 6957−6975, https://doi.org/10.1016/j.atmosenv.2005.04.027.
Huang, R. J., and Coauthors, 2014: High secondary aerosol contribution to particulate pollution during haze events in China. Nature, 514, 218−222, https://doi.org/10.1038/nature13774.
IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York, 571-657.
Li, G., W. Lei, M. Zavala, R. Volkamer, S. Dusanter, P. Stevens, and L. T. Molina, 2010: Impacts of HONO sources on the photochemistry in Mexico City during the MCMA-2006/MILAGO Campaign. Atmospheric Chemistry and Physics, 10, 6551−6567, https://doi.org/10.5194/acp-10-6551-2010.
Li, G., N. Bei, X. Tie, and L. T. Molina, 2011a: Aerosol effects on the photochemistry in Mexico City during MCMA-2006/MILAGRO campaign. Atmospheric Chemistry and Physics, 11, 5169−5182, https://doi.org/10.5194/acp-11-5169-2011.
Li, G., M. Zavala, W. Lei, A. P. Tsimpidi, V. A. Karydis, S. N. Pandis, M. R. Canagaratna, and L. T. Molina, 2011b: Simulations of organic aerosol concentrations in Mexico City using the WRF- CHEM model during the MCMA-2006/MILAGRO campaign. Atmospheric Chemistry and Physics, 11, 3789−3809, https://doi.org/10.5194/acp-11-3789-2011.
Li, G., W. Lei, N. Bei, and L. T. Molina, 2012: Contribution of garbage burning to chloride and PM2.5 in Mexico City. Atmospheric Chemistry and Physics, 12, 8751−8761, https://doi.org/10.5194/acp-12-8751-2012.
Li, G. H., R. Y. Zhang, J. W. Fan, and X. X. Tie, 2005: Impacts of black carbon aerosol on photolysis and ozone. Journal of Geophysical Research, 110, D23206, https://doi.org/10.1029/2005JD005898.
Li, J. W., Z. W. Han, Y. F. Wu, Z. Xiong, X. G. Xia, J. Li, L. Liang, and R. J. Zhang, 2020: Aerosol radiative effects and feedbacks on boundary layer meteorology and PM2.5 chemical components during winter haze events over the Beijing-Tianjin-Hebei region. Atmospheric Chemistry and Physics, 20, 8659−8690, https://doi.org/10.5194/acp-20-8659-2020.
Liu, Q., and Coauthors, 2018: New positive feedback mechanism between boundary layer meteorology and secondary aerosol formation during severe haze events. Scientific Reports, 8, 6095, https://doi.org/10.1038/s41598-018-24366-3.
Nenes, A., S. N. Pandis, and C. Pilinis, 1998: ISORROPIA: A new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols. Aquatic Geochemistry, 4, 123−152, https://doi.org/10.1023/A:1009604003981.
Petäjä, T., and Coauthors, 2016: Enhanced air pollution via aerosol-boundary layer feedback in China. Scientific Reports, 6, 18998, https://doi.org/10.1038/srep18998.
Rooney, B., Y. Wang, J. H. Jiang, B. Zhao, Z. C. Zeng, and J. H. Seinfeld, 2020: Air quality impact of the Northern California Camp Fire of November 2018. Atmospheric Chemistry and Physics, 20, 14 597−14 616, https://doi.org/10.5194/acp-20-14597-2020.
Seinfeld, J. H., and S. N. Pandis, 2006: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. 2nd ed., John Wiley and Sons Inc., New York, 1054-1087.
Shen, Z. X., J. J. Cao, R. Arimoto, Y. M. Han, C. S. Zhu, J. Tian, and S. X. Liu, 2010: Chemical characteristics of fine particles (PM1) from Xi’an, China. Aerosol Science and Technology, 44, 461−472, https://doi.org/10.1080/02786821003738908.
Shen, Z. X., J. J. Cao, S. X. Liu, C. S. Zhu, X. Wang, T. Zhang, H. M. Xu, and T. F. Hu, 2011: Chemical composition of PM10 and PM2.5 collected at ground level and 100 meters during a strong winter-time pollution episode in Xi’an, China. Journal of the Air & Waste Management Association, 61, 1150−1159, https://doi.org/10.1080/10473289.2011.608619.
Tie, X. X., and Coauthors, 2017: Severe pollution in China amplified by atmospheric moisture. Scientific Reports, 7, 15760, https://doi.org/10.1038/s41598-017-15909-1.
Wang, H., G. Y. Shi, X. Y. Zhang, S. L. Gong, S. C. Tan, B. Chen, H. Z. Che, and T. Li, 2015: Mesoscale modelling study of the interactions between aerosols and PBL meteorology during a haze episode in China Jing-Jin-Ji and its near surrounding region−Part 2: Aerosols' radiative feedback effects. Atmospheric Chemistry and Physics, 15, 3277−3287, https://doi.org/10.5194/acp-15-3277-2015.
Wang, J. D., and Coauthors, 2014a: Impact of aerosol-meteorology interactions on fine particle pollution during China’s severe haze episode in January 2013. Environmental Research Letters, 9, 094002, https://doi.org/10.1088/1748-9326/9/9/094002.
Wang, Z. F., and Coauthors, 2014b: Modeling study of regional severe hazes over mid-eastern China in January 2013 and its implications on pollution prevention and control. Science China Earth Sciences, 57, 3−13, https://doi.org/10.1007/s11430-013-4793-0.
Wesely, M. L., 1989: Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models. Atmospheric Environment, 23, 1293−1304, https://doi.org/10.1016/0004-6981(89)90153-4.
Wu, J. R., and Coauthors, 2019: Aerosol-radiation feedback deteriorates the wintertime haze in the North China Plain. Atmospheric Chemistry and Physics, 19(13), 8703−8719, https://doi.org/10.5194/acp-19-8703-2019.
Wu, J. R., and Coauthors, 2020: Aerosol-photolysis interaction reduces particulate matter during wintertime haze events. Proceedings of the National Academy of Sciences of the United States of America, 117(18), 9755−9761, https://doi.org/10.1073/pnas.1916775117.
Yang, X., C. F. Zhao, J. P. Guo, and Y. Wang, 2016: Intensification of aerosol pollution associated with its feedback with surface solar radiation and winds in Beijing. Journal of Geophysical Research, 121, 4093−4099, https://doi.org/10.1002/2015JD024645.
Zhang, X., Q. Zhang, C. P. Hong, Y. X. Zheng, G. N. Geng, D. Tong, Y. X. Zhang, and X. Y. Zhang, 2018: Enhancement of PM2.5 concentrations by aerosol-meteorology interactions over China. Journal of Geophysical Research, 123, 1179−1194, https://doi.org/10.1002/2017jd027524.
Zhong, J. T., and Coauthors, 2019: The two-way feedback mechanism between unfavorable meteorological conditions and cumulative aerosol pollution in various haze regions of China. Atmospheric Chemistry and Physics, 19, 3287−3306, https://doi.org/10.5194/acp-19-3287-2019.
Zhong, J. T., X. Y. Zhang, Y. S. Dong, Y. Q. Wang, C. Liu, J. Z. Wang, Y. M. Zhang, and H. C. Che, 2018a: Feedback effects of boundary-layer meteorological factors on cumulative explosive growth of PM2.5 during winter heavy pollution episodes in Beijing from 2013 to 2016. Atmospheric Chemistry and Physics, 18, 247−258, https://doi.org/10.5194/acp-18-247-2018.
Zhong, J. T., X. Y. Zhang, Y. Q. Wang, C. Liu, and Y. S. Dong, 2018b: Heavy aerosol pollution episodes in winter Beijing enhanced by radiative cooling effects of aerosols. Atmospheric Research, 209, 59−64, https://doi.org/10.1016/j.atmosres.2018.03.011.