Benedict, J. J., S. Lee, and S. B. Feldstein, 2004: Synoptic view of the North Atlantic Oscillation. J. Atmos. Sci., 61(2), 121−144, https://doi.org/10.1175/1520-0469(2004)061<0121:SVOTNA>2.0.CO;2.
Blackport, R., and J. A. Screen, 2021: Observed statistical connections overestimate the causal effects of Arctic sea ice changes on midlatitude winter climate. J. Climate, 34(8), 3021−3038, https://doi.org/10.1175/JCLI-D-20-0293.1.
Buizza, R., and M. Leutbecher, 2015: The forecast skill horizon. Quart. J. Roy. Meteor. Soc., 141(693), 3366−3382, https://doi.org/10.1002/qj.2619.
Cohen, J., and Coauthors, 2020: Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nature Climate Change, 10(1), 20−29, https://doi.org/10.1038/s41558-019-0662-y.
Comiso, J. C., 1986: Characteristics of Arctic winter sea ice from satellite multispectral microwave observations. J. Geophys. Res.: Oceans, 91(C1), 975−994, https://doi.org/10.1029/JC091iC01p00975.
Dai, G. K., and M. Mu, 2020: Influence of the Arctic on the predictability of Eurasian winter extreme weather events. Adv. Atmos. Sci., 37(4), 307−317, https://doi.org/10.1007/s00376-019-9222-7.
Dai, G. K., M. Mu, and Z. N. Jiang, 2016: Relationships between optimal precursors triggering NAO onset and optimally growing initial errors during NAO prediction. J. Atmos. Sci., 73(1), 293−317, https://doi.org/10.1175/JAS-D-15-0109.1.
Dai, G. K., M. Mu, and Z. N. Jiang, 2019: Targeted observations for improving prediction of the NAO onset. J. Meteorol. Res., 33(6), 1044−1059, https://doi.org/10.1007/s13351-019-9053-6.
Dai, G. K., M. Mu, and L. Wang, 2021b: The influence of sudden Arctic sea-ice thinning on North Atlantic oscillation events. Atmosphere-Ocean, 59(1), 39−52, https://doi.org/10.1080/07055900.2021.1875976.
Dai, G. K., M. Mu, C. X. Li, Z. Han, and L. Wang, 2021a: Evaluation of the forecast performance for extreme cold events in East Asia with subseasonal-to-seasonal data sets from ECMWF. J. Geophys. Res.: Atmos., 126, 2020JD033860, https://doi.org/10.1029/2020JD033860.
Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137(656), 553−597, https://doi.org/10.1002/qj.828.
Deser, C., R. A. Tomas, and S. L. Peng, 2007: The transient atmospheric circulation response to north Atlantic SST and sea ice anomalies. J. Climate, 20(18), 4751−4767, https://doi.org/10.1175/JCLI4278.1.
Diao, Y. N., S. P. Xie, and D. H. Luo, 2015: Asymmetry of winter European surface air temperature extremes and the North Atlantic Oscillation. J. Climate, 28(2), 517−530, https://doi.org/10.1175/JCLI-D-13-00642.1.
Duan, W. S., and F. F. Zhou, 2013: Non-linear forcing singular vector of a two-dimensional quasi-geostrophic model. Tellus A: Dynamic Meteorology and Oceanography, 65(1), 18452, https://doi.org/10.3402/tellusa.v65i0.18452.
Feldstein, S. B., 2003: The dynamics of NAO teleconnection pattern growth and decay. Quart. J. Roy. Meteor. Soc., 129(589), 901−924, https://doi.org/10.1256/qj.02.76.
Francis, J. A., W. H. Chan, D. J. Leathers, J. R. Miller, and D. E. Veron, 2009: Winter northern hemisphere weather patterns remember summer Arctic sea-ice extent. Geophys. Res. Lett., 36(7), L07503, https://doi.org/10.1029/2009GL037274.
Franzke, C., S. Lee, and S. B. Feldstein, 2004: Is the North Atlantic Oscillation a breaking wave? J. Atmos. Sci., 61(2), 145−160, https://doi.org/10.1175/1520-0469(2004)061<0145:ITNAOA>2.0.CO;2.
Hoskins, B., 1997: A potential vorticity view of synoptic development. Meteorological Applications, 4(4), 325−334, https://doi.org/10.1017/S1350482797000716.
Hoskins, B. J., H. H. Hsu, I. N. James, M. Masutani, P. D. Sardeshmukh, and G. H. White, 1989: Diagnostics of the global atmospheric circulation based on ECMWF analyses 1979−1989. WCRP- No. 27, WMO/TD-No.326, 217 pp.
Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269(5224), 676−679, https://doi.org/10.1126/science.269.5224.676.
Hurrell, J. W., and C. Deser, 2010: North Atlantic climate variability: The role of the North Atlantic Oscillation. J. Mar. Syst., 79(3−4), 231−244, https://doi.org/10.1016/j.jmarsys.2009.11.002.
Jaiser, R., K. Dethloff, and D. Handorf, 2013: Stratospheric response to Arctic sea ice retreat and associated planetary wave propagation changes. Tellus A: Dynamic Meteorology and Oceanography, 65(1), 19375, https://doi.org/10.3402/tellusa.v65i0.19375.
Jaiser, R., K. Dethloff, D. Handorf, and J. Cohen, 2012: Impact of sea ice cover changes on the Northern Hemisphere atmospheric winter circulation. Tellus A: Dynamic Meteorology and Oceanography, 64(1), 11595, https://doi.org/10.3402/tellusa.v64i0.11595.
Jiang, Z. N., M. Mu, and D. H. Luo, 2013: A study of the North Atlantic Oscillation using conditional nonlinear optimal perturbation. J. Atmos. Sci., 70(3), 855−875, https://doi.org/10.1175/JAS-D-12-0148.1.
Kennedy, J., and R. Eberhart, 1995: Particle swarm optimization. Proc. IEEE International Conf. on Neural Networks, Perth, WA, Australia, IEEE, 1942−1948, https://doi.org/10.1109/ICNN.1995.488968.
Liu, X. W., and Coauthors, 2017: MJO prediction using the sub-seasonal to seasonal forecast model of Beijing climate center. Climate Dyn., 48(9−10), 3283−3307, https://doi.org/10.1007/s00382-016-3264-7.
Luo, D. H., A. R. Lupo, and H. Wan, 2007: Dynamics of eddy-driven low-frequency dipole modes. Part I: A simple model of North Atlantic oscillations. J. Atmos. Sci., 64(1), 3−28, https://doi.org/10.1175/JAS3818.1.
Luo, D. H., T. T. Gong, and Y. N. Diao, 2008: Dynamics of eddy-driven low-frequency dipole modes. Part IV: Planetary and synoptic wave-breaking processes during the NAO life cycle. J. Atmos. Sci., 65(3), 737−765, https://doi.org/10.1175/2007JAS2440.1.
Luo, D. H., Y. Yao, and S. B. Feldstein, 2014: Regime transition of the North Atlantic Oscillation and the extreme cold event over Europe in January-February 2012. Mon. Wea. Rev., 142(12), 4735−4757, https://doi.org/10.1175/MWR-D-13-00234.1.
Luo, D. H., Y. Yao, A. G. Dai, and S. B. Feldstein, 2015: The positive North Atlantic Oscillation with downstream blocking and Middle East snow-storms: The large-scale environment. J. Climate, 28(16), 6398−6418, https://doi.org/10.1175/JCLI-D-15-0184.1.
Luo, D. H., Y. Q. Xiao, Y. Yao, A. G. Dai, I. Simmonds, and C. L. E. Franzke, 2016: Impact of Ural blocking on winter warm Arctic–cold Eurasian anomalies. Part I: Blocking-induced Amplification. J. Climate, 29(11), 3925−3947, https://doi.org/10.1175/JCLI-D-15-0611.1.
Luo, D. H., X. D. Chen, J. Overland, I. Simmonds, Y. T. Wu, and P. F. Zhang, 2019: Weakened potential vorticity barrier linked to recent winter Arctic sea ice loss and midlatitude cold extremes. J. Climate, 32(14), 4235−4261, https://doi.org/10.1175/JCLI-D-18-0449.1.
Ma, X. Y., M. Mu, G. K. Dai, Z. Han, C. X. Li, and Z. N. Jiang, 2022: Influence of Arctic sea ice concentration on extended-range prediction of strong and long-lasting Ural blocking events in winter. J. Geophys. Res.: Atmos., 127, e2021JD036282, https://doi.org/10.1029/2021JD036282.
Mariotti, A., and Coauthors, 2020: Windows of opportunity for skillful forecasts subseasonal to seasonal and beyond. Bull. Amer. Meteor. Soc., 101(5), E608−E625, https://doi.org/10.1175/BAMS-D-18-0326.1.
McKenna, C. M., T. J. Bracegirdle, E. F. Shuckburgh, P. H. Haynes, and M. M. Joshi, 2018: Arctic sea ice loss in different regions leads to contrasting northern hemisphere impacts. Geophys. Res. Lett., 45(2), 945−954, https://doi.org/10.1002/2017GL076433.
Mesquita, M. D. S., K. I. Hodges, D. E. Atkinson, and J. Bader, 2011: Sea-ice anomalies in the Sea of Okhotsk and the relationship with storm tracks in the Northern Hemisphere during winter. Tellus A: Dynamic Meteorology and Oceanography, 63(2), 312−323, https://doi.org/10.1111/j.1600-0870.2010.00483.x.
Mu, B., S. C. Wen, S. J. Yuan, and H. Y. Li, 2015: PPSO: PCA based particle swarm optimization for solving conditional nonlinear optimal perturbation. Computers & Geosciences, 83, 65−71, https://doi.org/10.1016/j.cageo.2015.06.016.
Mu, M., W. S. Duan, and B. Wang, 2003: Conditional nonlinear optimal perturbation and its applications. Nonlinear Processes in Geophysics, 10(6), 493−501, https://doi.org/10.5194/npg-10-493-2003.
Mu, M., W. Duan, Q. Wang, and R. Zhang, 2010: An extension of conditional nonlinear optimal perturbation approach and its applications. Nonlinear Processes in Geophysics, 17(2), 211−220, https://doi.org/10.5194/npg-17-211-2010.
Neale, R. B., J. Richter, S. Park, P. H. Lauritzen, S. J. Vavrus, P. J. Rasch, and M. H. Zhang, 2013: The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments. J. Climate, 26(14), 5150−5168, https://doi.org/10.1175/JCLI-D-12-00236.1.
Nie, Y., A. A. Scaife, H. L. Ren, R. E. Comer, M. B. Andrews, P. Davis, and N. Martin, 2019: Stratospheric initial conditions provide seasonal predictability of the North Atlantic and Arctic Oscillations. Environmental Research Letters, 14(3), 034006, https://doi.org/10.1088/1748-9326/ab0385.
Overland, J. E., K. R. Wood, and M. Y. Wang, 2011: Warm Arctic—cold continents: Climate impacts of the newly open Arctic Sea. Polar Research, 30(1), 15787, https://doi.org/10.3402/polar.v30i0.15787.
Screen, J. A., 2017: Simulated atmospheric response to regional and pan-Arctic sea ice loss. J. Climate, 30(11), 3945−3962, https://doi.org/10.1175/JCLI-D-16-0197.1.
Semmler, T., T. Jung, and S. Serrar, 2016: Fast atmospheric response to a sudden thinning of Arctic sea ice. Climate Dyn., 46(3−4), 1015−1025, https://doi.org/10.1007/s00382-015-2629-7.
Shi, Y., and R. C. Eberhart, 1999: Empirical study of particle swarm optimization. Proc. 1999 Congress on Evolutionary Computation-CEC99, Washington, DC, USA, IEEE, 1945−1950, https://doi.org/10.1109/CEC.1999.785511.
Siew, P. Y. F., C. Li, M. Ting, S. P. Sobolowski, Y. T. Wu, and X. D. Chen, 2021: North Atlantic Oscillation in winter is largely insensitive to autumn Barents-Kara sea ice variability. Science Advances, 7(31), eabg4893, https://doi.org/10.1126/sciadv.abg4893.
Singarayer, J. S., P. J. Valdes, and J. L. Bamber, 2005: The atmospheric impact of uncertainties in recent Arctic sea ice reconstructions. J. Climate, 18(19), 3996−4012, https://doi.org/10.1175/JCLI3490.1.
Strommen, K., S. Juricke, and F. Cooper, 2022: Improved teleconnection between Arctic sea ice and the North Atlantic Oscillation through stochastic process representation. Weather and Climate Dynamics, 3(3), 951−975, https://doi.org/10.5194/wcd-3-951-2022.
Sun, L. T., C. Deser, and R. A. Tomas, 2015: Mechanisms of stratospheric and tropospheric circulation response to projected Arctic sea ice loss. J. Climate, 28(19), 7824−7845, https://doi.org/10.1175/JCLI-D-15-0169.1.
Sun, L. T., C. Deser, I. Simpson, and M. Sigmond, 2022: Uncertainty in the winter tropospheric response to Arctic Sea ice loss: The role of stratospheric polar vortex internal variability. J. Climate, 35(10), 3109−3130, https://doi.org/10.1175/JCLI-D-21-0543.1.
Thompson, D. W. J., J. M. Wallace, and G. C. Hegerl, 2000: Annular modes in the extratropical circulation. Part II: Trends. J. Climate, 13(5), 1018−1036, https://doi.org/10.1175/1520-0442(2000)013<1018:AMITEC>2.0.CO;2.
Vihma, T., 2014: Effects of Arctic sea ice decline on weather and climate: A review. Surveys in Geophysics, 35(5), 1175−1214, https://doi.org/10.1007/s10712-014-9284-0.
Vitart, F., and Coauthors, 2017: The subseasonal to seasonal (S2S) prediction project database. Bull. Amer. Meteor. Soc., 98(1), 163−173, https://doi.org/10.1175/BAMS-D-16-0017.1.
Walker, G. T., and E. W. Bliss, 1932: World weather V. Memoirs of the Royal Meteorological Society, 4, 53−84.
Wang, Q., and M. Mu, 2015: A new application of conditional nonlinear optimal perturbation approach to boundary condition uncertainty. J. Geophys. Res.: Oceans, 120(12), 7979−7996, https://doi.org/10.1002/2015JC011095.
Wang, Q., M. Mu, and G. D. Sun, 2020: A useful approach to sensitivity and predictability studies in geophysical fluid dynamics: Conditional non-linear optimal perturbation. National Science Review, 7(1), 214−223, https://doi.org/10.1093/nsr/nwz039.
Wang, X. J., Z. H. Zheng, and G. L. Feng, 2018: Effects of air-sea interaction on extended-range prediction of geopotential height at 500 hPa over the northern extratropical region. Theor. Appl. Climatol., 132(1), 31−40, https://doi.org/10.1007/s00704-017-2071-3.
Warner, J. L., J. A. Screen, and A. A. Scaife, 2020: Links between Barents-Kara sea ice and the extratropical atmospheric circulation explained by internal variability and tropical forcing. Geophys. Res. Lett., 47(1), e2019GL085679, https://doi.org/10.1029/2019GL085679.
Xiang, B. Q., Y. Q. Sun, J. H. Chen, N. C. Johnson, and X. N. Jiang, 2020: Subseasonal prediction of land cold extremes in boreal wintertime. J. Geophys. Res.: Atmos., 125, e2020JD032670, https://doi.org/10.1029/2020JD032670.
Xiang, B. Q., S.-J. Lin, M. Zhao, N. C. Johnson, X. S. Yang, and X. N. Jiang, 2019: Subseasonal week 3-5 surface air temperature prediction during boreal wintertime in a GFDL model. Geophys. Res. Lett., 46, 416−425, https://doi.org/10.1029/2018GL081314.
Yamamoto, K., Y. Tachibana, M. Honda, and J. Ukita, 2006: Intra-seasonal relationship between the Northern Hemisphere sea ice variability and the North Atlantic Oscillation. Geophys. Res. Lett., 33(14), L14711, https://doi.org/10.1029/2006GL026286.
Zhang, K., M. Mu, and Q. Wang, 2020: Increasingly important role of numerical modeling in oceanic observation design strategy: A review. Science China Earth Sciences, 63, 1678−1690, https://doi.org/10.1007/s11430-020-9674-6.
Zhang, K., M. Mu, Q. Wang, B. S. Yin, and S. X. Liu, 2019: CNOP-based adaptive observation network designed for improving upstream Kuroshio transport prediction. J. Geophys. Res.: Oceans, 124, 4350−4364, https://doi.org/10.1029/2018JC014490.
Zhang, P. F., Y. T. Wu, I. R. Simpson, K. L. Smith, X. D. Zhang, B. De, and P. Callaghan, 2018: A stratospheric pathway linking a colder Siberia to Barents-Kara Sea sea ice loss. Science Advances, 4, eaat6025, https://doi.org/10.1126/sciadv.aat6025.