Bao, X. H., F. Q. Zhang, and J. H. Sun, 2011: Diurnal variations of warm-season precipitation east of the Tibetan Plateau over China. Mon. Wea. Rev., 139, 2790−2810, https://doi.org/10.1175/MWR-D-11-00006.1.
Blackadar, A. K., 1957: Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc., 38, 283−290, https://doi.org/10.1175/1520-0477-38.5.283.
Buajitti, K., and A. K. Blackadar, 1957: Theoretical studies of diurnal wind-structure variations in the planetary boundary layer. Quart. J. Roy. Meteor. Soc., 83, 486−500, https://doi.org/10.1002/qj.49708335804.
Chen, J., Y. G. Zheng, X. L. Zhang, and P. J. Zhu, 2013: Distribution and diurnal variation of warm-season short-duration heavy rainfall in relation to the MCSs in China. Acta Meteorologica Sinica, 27, 868−888, https://doi.org/10.1007/s13351-013-0605-x.
Du, Y., and R. Rotunno, 2014: A simple analytical model of the nocturnal low-level jet over the Great Plains of the United States. J. Atmos. Sci., 71, 3674−3683, https://doi.org/10.1175/JAS-D-14-0060.1.
Feng, X. Y., C. H. Liu, G. Z. Fan, X. D. Liu, and C. Y. Feng, 2016: Climatology and structures of southwest vortices in the NCEP climate forecast system reanalysis. J. Climate, 29, 7675−7701, https://doi.org/10.1175/JCLI-D-15-0813.1.
Fu, S.-M., J.-P. Zhang, J.-H. Sun, and X.-Y. Shen, 2014: A fourteen-year climatology of the southwest vortex in Summer. Atmos. Ocean. Sci. Lett., 7, 510−514, https://doi.org/10.3878/AOSL20140047.
Fu, S.-M., Z. Mai, J.-H. Sun, W.-L. Li, Y. Ding, and Y.-Q. Wang, 2019: Impacts of convective activity over the Tibetan Plateau on plateau vortex, southwest vortex, and downstream precipitation. J. Atmos. Sci., 76, 3803−3830, https://doi.org/10.1175/JAS-D-18-0331.1.
Hersbach, H., B. Bill, P. Berrisford, et al, 2020: The ERA5 global reanalysis. Q. J. R. Meteorol. Soc, 146(730), 1999−2049, https://doi.org/10.1002/qj.3803.
Holton, J. R., 1967: The diurnal boundary layer wind oscillation above sloping terrain. Tellus, 19, 200−205, https://doi.org/10.3402/tellusa.v19i2.9766.
Hoxit, L R., 1975: Diurnal variations in planetary boundary-layer winds over land. Bound.-Layer Meteorol., 8, 21−38, https://doi.org/10.1007/BF02579391.
Hu, L., D. F. Deng, S. T. Gao, and X. D. Xu, 2016: The seasonal variation of Tibetan convective systems: Satellite observation. J. Geophys. Res., 121, 5512−5525, https://doi.org/10.1002/2015JD024390.
Huang, Y. J., Y. B. Liu, Y. W. Liu, and J. C. Knievel, 2019: Budget analyses of a record-breaking rainfall event in the coastal metropolitan city of Guangzhou, China. J. Geophys. Res., 124, 9391−9406, https://doi.org/10.1029/2018JD030229.
Jiang, X. N., N.-C. Lau, I. M. Held, and J. J. Ploshay, 2007: Mechanisms of the Great Plains low-level jet as simulated in an AGCM. J. Atmos. Sci., 64, 532−547, https://doi.org/10.1175/JAS3847.1.
Jin, X., T. W. Wu, and L. Li, 2013: The quasi-stationary feature of nocturnal precipitation in the Sichuan Basin and the role of the Tibetan Plateau. Climate Dyn., 41, 977−994, https://doi.org/10.1007/s00382-012-1521-y.
Kuo, Y.-H., L. S. Cheng, and J.-W. Bao, 1988: Numerical simulation of the 1981 Sichuan flood. Part I: Evolution of a mesoscale southwest vortex. Mon. Wea. Rev., 116, 2481−2504, https://doi.org/10.1175/1520-0493(1988)116<2481:NSOTSF>2.0.CO;2.
Li, J., J. Du, D.-L. Zhang, C. G. Cui, and Y. S. Liao, 2014: Ensemble-based analysis and sensitivity of mesoscale forecasts of a vortex over southwest China. Quart. J. Roy. Meteor. Soc., 140, 766−782, https://doi.org/10.1002/qj.2200.
Li, L., R. H. Zhang, and M. Wen, 2017: Genesis of southwest vortices and its relation to Tibetan Plateau vortices. Quart. J. Roy. Meteor. Soc., 143, 2556−2566, https://doi.org/10.1002/qj.3106.
Li, Y. D., Y. Wang, Y. Song, L. Hu, S. T. Gao, and F. Rong, 2008: Characteristics of summer convective systems initiated over the Tibetan Plateau. Part I: Origin, track−2695, https://doi.org/10.1175/2008JAMC1695.1.
Liu, X., Y. L. Luo, Z. Y. Guan, and D.-L. Zhang, 2018: An extreme rainfall event in coastal South China during SCMREX-2014: Formation and roles of rainband and echo trainings. J. Geophys. Res., 123, 9256−9278, https://doi.org/10.1029/2018JD028418.
Luo, Y. L., M. W. Wu, F. M. Ren, J. Li, and W.-K. Wong, 2016: Synoptic situations of extreme hourly precipitation over China. J. Climate, 29, 8703−8719, https://doi.org/10.1175/JCLI-D-16-0057.1.
Luo, Y. L., and Coauthors, 2020: Science and prediction of heavy rainfall over China: Research progress since the reform and opening-up of new China. Journal of Meteorological Research, 34, 427−459, https://doi.org/10.1007/s13351-020-0006-x.
Markowski, P., and Y. Richardson, 2010: Mesoscale Meteorology in Midlatitudes. John Wiley & Sons, Ltd., 407pp, https://doi.org/10.1002/9780470682104.
Qian, T. T., P. Zhao, F. Q. Zhang, and X. H. Bao, 2015: Rainy-season precipitation over the Sichuan basin and adjacent regions in southwestern China. Mon. Wea. Rev., 143, 383−394, https://doi.org/10.1175/MWR-D-13-00158.1.
Shapiro, A., E. Fedorovich, and S. Rahimi, 2016: A unified theory for the Great Plains nocturnal low-level jet. J. Atmos. Sci., 73, 3037−3057, https://doi.org/10.1175/JAS-D-15-0307.1.
Sugimoto, S., and K. Ueno, 2010: Formation of mesoscale convective systems over the eastern Tibetan Plateau affected by plateau-scale heating contrasts. J. Geophys. Res., 115(D16), D16105, https://doi.org/10.1029/2009JD013609.
Tu, C.-C., Y.-L. Chen, S.-Y. Chen, Y.-H. Kuo, and P.-L. Lin, 2017: Impacts of including rain-evaporative cooling in the initial conditions on the prediction of a coastal heavy rainfall event during TiMREX. Mon. Wea. Rev., 145, 253−277, https://doi.org/10.1175/MWR-D-16-0224.1.
Ueno, K., S. Sugimoto, T. Koike, H. Tsutsui, and X. D. Xu, 2011: Generation processes of mesoscale convective systems following midlatitude troughs around the Sichuan basin. J. Geophys. Res., 116, D02104, https://doi.org/10.1029/2009JD013780.
Wang, C.-C., Chen, G. T.-J., and R. E. Carbone, 2005: Variability of warm-season cloud episodes over East Asia based on GMS infrared brightness temperature observations. Mon. Wea. Rev., 133, 1478−1500, https://doi.org/10.1175/MWR2928.1.
Wang, Q.-W., and Z.-M. Tan, 2014: Multi-scale topographic control of southwest vortex formation in Tibetan Plateau region in an idealized simulation. J. Geophys. Res., 119, 11543−11561, https://doi.org/10.1002/2014JD021898.
Wu, M. W., and Y. L. Luo, 2016: Mesoscale observational analysis of lifting mechanism of a warm-sector convective system producing the maximal daily precipitation in China mainland during pre-summer rainy season of 2015. Journal of Meteorological Research, 30, 719−736, https://doi.org/10.1007/s13351-016-6089-8.
Xia, R. D., D.-L. Zhang, and B. L. Wang, 2015: A 6-yr cloud-to-ground lightning climatology and its relationship to rainfall over Central and Eastern China. J. Appl. Meteorol. Climatol., 54, 2443−2460, https://doi.org/10.1175/JAMC-D-15-0029.1.
Yuan, W. H., R. C. Yu, M. H. Zhang, W. Y. Lin, H. M. Chen, and J. Li, 2012: Regimes of diurnal variation of summer rainfall over subtropical East Asia. J. Climate, 25, 3307−3320, https://doi.org/10.1175/JCLI-D-11-00288.1.
Zhang, C. H., R. D. Xia, and Y. Q. Wang, 2018: Observational analysis of a local heavy rainfall in Beijing caused by terrain, cold pool outflow and warm moist air interactions. Transactions of Atmospheric Sciences, 41, 207−219, https://doi.org/10.13878/j.cnki.dqkxxb.20160115001. (in Chinese with English abstract
Zhang, D.-L., and J. M. Fritsch, 1987: Numerical simulation of the meso-β scale structure and evolution of the 1977 Johnstown flood. Part II: Inertially stable warm-core vortex and the mesoscale convective complex. J. Atmos. Sci., 44, 2593−2612, https://doi.org/10.1175/1520-0469(1987)044<2593:NSOTMS>2.0.CO;2.
Zhang, D.-L., S. L. Zhang, and S. J. Weaver, 2006: Low-level jets over the mid-Atlantic States: Warm-season climatology and a case study. J. Appl. Meteorol. Climatol., 45, 194−209, https://doi.org/10.1175/JAM2313.1.
Zhang, Y. H., M. Xue, K. F. Zhu, and B. W. Zhou. 2019: What is the main cause of diurnal variation and nocturnal peak of summer precipitation in Sichuan Basin, China? The key role of boundary layer low-level jet inertial oscillations. J. Geophys. Res., 124, 2643−2664, https://doi.org/10.1029/2018JD029834.
Zhao, Y. C., 2015: A study on the heavy-rain-producing mesoscale convective system associated with diurnal variation of radiation and topography in the eastern slope of the western Sichuan plateau. Meteorol. Atmos. Phys., 127, 123−146, https://doi.org/10.1007/s00703-014-0356-y.
Zhou, T.-J., and R.-C. Yu, 2005: Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J. Geophys. Res., 110, D08104, https://doi.org/10.1029/2004JD005413.