Arellano-Treviño, M. A., N. Kanani, C. W. Jeong-Potter, and R. J. Farrauto, 2019a: Bimetallic catalysts for CO2 capture and hydrogenation at simulated flue gas conditions. Chemical Engineering Journal, 375, 121953, https://doi.org/10.1016/j.cej.2019.121953.
Arellano-Treviño, M. A., Z. Y. He, M. C. Libby, and R. J. Farrauto, 2019b: Catalysts and adsorbents for CO2 capture and conversion with dual function materials: Limitations of Ni-containing DFMs for flue gas applications. Journal of CO2 Utilization, 31, 143−151,
Bai, X. F., W. Chen, C. C. Zhao, S. G. Li, Y. F. Song, R. P. Ge, W. Wei, and Y. H. Sun, 2017: Exclusive formation of formic acid from CO2 electroreduction by a tunable Pd-Sn alloy. Angewandte Chemie International Edition, 56, 12 219−12 223,
Bhatt, P. M., Y. Belmabkhout, A. Cadiau, K. Adil, O. Shekhah, A. Shkurenko, L. J. Barbour, and M. Eddaoudi, 2016: A fine-tuned fluorinated MOF addresses the needs for trace CO2 removal and air capture using physisorption. Journal of the American Chemical Society, 138, 9301−9307, https://doi.org/10.1021/jacs.6b05345.
Bitzer, J., S.-L. Heck, and W. Kleist, 2020: Tailoring the breathing behavior of functionalized MIL-53(Al,M)-NH2 materials by using the mixed-metal concept. Microporous and Mesoporous Materials, 308, 110329, https://doi.org/10.1016/j.micromeso.2020.110329.
Bobadilla, L. F., J. M. Riesco-García, G. Penelás-Pérez, and A. Urakawa, 2016: Enabling continuous capture and catalytic conversion of flue gas CO2 to syngas in one process. Journal of CO2 Utilization, 14, 106−111,
Brethomé, F. M., N. J. Williams, C. A. Seipp, M. K. Kidder, and R. Custelcean, 2018: Direct air capture of CO2 via aqueous-phase absorption and crystalline-phase release using concentrated solar power. Nature Energy, 3, 553−559, https://doi.org/10.1038/s41560-018-0150-z.
Cavalcanti, L. P., G. N. Kalantzopoulos, J. Eckert, K. D. Knudsen, and J. O. Fossum, 2018: A nano-silicate material with exceptional capacity for CO2 capture and storage at room temperature. Scientific Reports, 8, 112827, https://doi.org/10.1038/s41598-018-30283-2.
Chanut, N., A. Ghoufi, M.-V. Coulet, S. Bourrelly, B. Kuchta, G. Maurin, and P. L. Llewellyn, 2020: Tailoring the separation properties of flexible metal-organic frameworks using mechanical pressure. Nature Communications, 11, 1216, https://doi.org/10.1038/s41467-020-15036-y.
Choi, S., M. L. Gray, and C. W. Jones, 2011: Amine-tethered solid adsorbents coupling high adsorption capacity and regenerability for CO2 capture from ambient air. ChemSusChem, 4, 628−635, https://doi.org/10.1002/cssc.201000355.
Climeworks, 2021: Direct air capture: a technology to remove CO2. Available from https://climeworks.com/co2-removal.
Custelcean, R., 2021: Direct air capture of CO2 via crystal engineering. Chemical Science, 12, 12 518−12 528,
de Jonge, M. M. J., J. Daemen, J. M. Loriaux, Z. J. N. Steinmann, and M. A. J. Huijbregts, 2019: Life cycle carbon efficiency of Direct Air Capture systems with strong hydroxide sorbents. International Journal of Greenhouse Gas Control, 80, 25−31, https://doi.org/10.1016/j.ijggc.2018.11.011.
Deutz, S., and A. Bardow, 2021: Life-cycle assessment of an industrial direct air capture process based on temperature–vacuum swing adsorption. Nature Energy, 6, 203−213, https://doi.org/10.1038/s41560-020-00771-9.
Didas, S. A., S. Choi, W. Chaikittisilp, and C. W. Jones, 2015: Amine-oxide hybrid materials for CO2 capture from ambient air. Accounts of Chemical Research, 48, 2680−2687, https://doi.org/10.1021/acs.accounts.5b00284.
Dinh, C. T., and Coauthors, 2018: CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science, 360, 783−787, https://doi.org/10.1126/science.aas9100.
Dong, Q. B., and Coauthors, 2021: Corrigendum: Tunning gate-opening of a flexible metal–organic framework for ternary gas sieving separation. Angewandte Chemie International Edition, 60, 3850−3850, https://doi.org/10.1002/anie.202100663.
Duyar, M. S., M. A. A. Treviño, and R. J. Farrauto, 2015: Dual function materials for CO2 capture and conversion using renewable H2. Applied Catalysis B: Environmental, 168−169, 370−376,
Duyar, M. S., S. X. Wang, M. A. Arellano-Treviño, and R. J. Farrauto, 2016: CO2 utilization with a novel dual function material (DFM) for capture and catalytic conversion to synthetic natural gas: An update. Journal of CO2 Utilization, 15, 65−71,
Energy & Climate Intelligence Unit, 2021: Net zero emissions race. [Available from https://eciu.net/netzerotracker].
Engineering, C., 2021: Carbon engineering deployment timeline. Available from https://carbonengineering.com/our-story/.
Franchi, R. S., P. J. E. Harlick, and A. Sayari, 2005: Applications of pore-expanded mesoporous silica. 2. Development of a high-capacity, water-tolerant adsorbent for CO2. Industrial & Engineering Chemistry Research, 44, 8007−8013, https://doi.org/10.1021/ie0504194.
Furukawa, H., K. E. Cordova, M. O’Keeffe, and O. M. Yaghi, 2013: The chemistry and applications of metal-organic frameworks. Science, 341, 1230444, https://doi.org/10.1126/science.1230444.
Ghoufi, A., K. Benhamed, L. Boukli-Hacene, and G. Maurin, 2017: Electrically induced breathing of the MIL-53(Cr) metal–organic framework. ACS Central Science, 3, 394−398, https://doi.org/10.1021/acscentsci.6b00392.
Goeppert, A., M. Czaun, R. B. May, G. K. S. Prakash, G. A. Olah, and S. R. Narayanan, 2011: Carbon dioxide capture from the air using a polyamine based regenerable solid adsorbent. Journal of the American Chemical Society, 133, 20 164−20 167,
Goglio, P., A. G. Williams, N. Balta-Ozkan, N. R. P. Harris, P. Williamson, D. Huisingh, Z. Zhang, and M. Tavoni, 2020: Advances and challenges of life cycle assessment (LCA) of greenhouse gas removal technologies to fight climate changes. Journal of Cleaner Production, 244, 118896, https://doi.org/10.1016/j.jclepro.2019.118896.
Gong, Q., and Coauthors, 2019: Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction. Nature Communications, 10, 2807, https://doi.org/10.1038/s41467-019-10819-4.
Hepburn, C., and Coauthors, 2019: The technological and economic prospects for CO2 utilization and removal. Nature, 575, 87−97, https://doi.org/10.1038/s41586-019-1681-6.
Hicks, J. C., J. H. Drese, D. J. Fauth, M. L. Gray, G. G. Qi, and C. W. Jones, 2008: Designing adsorbents for CO2 capture from flue gas-hyperbranched aminosilicas capable of capturing CO2 reversibly. Journal of the American Chemical Society, 130, 2902−2903, https://doi.org/10.1021/ja077795v.
Huang, Y., A. D. Handoko, P. Hirunsit, and B. S. Yeo, 2017: Electrochemical reduction of CO2 using copper single-crystal surfaces: Effects of CO* coverage on the selective formation of ethylene. ACS Catalysis, 7, 1749−1756, https://doi.org/10.1021/acscatal.6b03147.
Hunt, P., D. R. Worrall, F. Wilkinson, and S. N. Batchelor, 2003: Quantitative rate constants for the reaction of dyes and alkenes with α-hydroxyalkyl radicals, measured by laser flash photolysis. Photochemical & Photobiological Sciences, 2, 518−523, https://doi.org/10.1039/B212051H.
IEA, 2020a: World energy outlook 2020. 171 pp.
IEA, 2020b: Energy technology perspectives 2020. 461 pp.
Inagaki, F., C. Matsumoto, T. Iwata, and C. Mukai, 2017: CO2-selective absorbents in air: Reverse lipid bilayer structure forming neutral carbamic acid in water without hydration. Journal of the American Chemical Society, 139, 4639−4642, https://doi.org/10.1021/jacs.7b01049.
IPCC, 2014: Climate Change 2014: Synthesis Report, contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland, 151 pp.
IPCC, 2018: Global Warming of 1.5°C. World Meteorological Organization, Geneva, Switzerland, 32 pp.
Kar, S., R. Sen, A. Goeppert, and G. K. S. Prakash, 2018: Integrative CO2 capture and hydrogenation to methanol with reusable catalyst and amine: Toward a carbon neutral methanol economy. Journal of the American Chemical Society, 140, 1580−1583, https://doi.org/10.1021/jacs.7b12183.
Kar, S., A. Goeppert, and G. K. S. Prakash, 2019: Integrated CO2 capture and conversion to formate and methanol: Connecting two threads. Accounts of Chemical Research, 52, 2892−2903, https://doi.org/10.1021/acs.accounts.9b00324.
Keith, D. W., G. Holmes, D. S. Angelo, and K. Heidel, 2018: A process for capturing CO2 from the atmosphere. Joule, 2, 1573−1594, https://doi.org/10.1016/j.joule.2018.05.006.
Keller, L., B. Ohs, J. Lenhart, L. Abduly, P. Blanke, and M. Wessling, 2018: High capacity polyethylenimine impregnated microtubes made of carbon nanotubes for CO2 capture. Carbon, 126, 338−345, https://doi.org/10.1016/j.carbon.2017.10.023.
Kim, D., and Coauthors, 2020a: Selective CO2 electrocatalysis at the pseudocapacitive nanoparticle/ordered-ligand interlayer. Nature Energy, 5, 1032−1042, https://doi.org/10.1038/s41560-020-00730-4.
Kim, E. J., and Coauthors, 2020b: Cooperative carbon capture and steam regeneration with tetraamine-appended metal-organic frameworks. Science, 369, 392−396, https://doi.org/10.1126/science.abb3976.
Kitaura, R., K. Seki, G. Akiyama, and S. Kitagawa, 2003: Porous coordination-polymer crystals with gated channels specific for supercritical gases. Angewandte Chemie International Edition, 42, 428−431, https://doi.org/10.1002/anie.200390130.
Kortlever, R., J. Shen, K. J. P. Schouten, F. Calle-Vallejo, and M. T. Koper, 2015: Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. The Journal of Physical Chemistry Letters, 6, 4073−4082, https://doi.org/10.1021/acs.jpclett.5b01559.
Kothandaraman, J., A. Goeppert, M. Czaun, G. A. Olah, and G. K. S. Prakash, 2016: Conversion of CO2 from air into methanol using a polyamine and a homogeneous ruthenium catalyst. Journal of the American Chemical Society, 138, 778−781, https://doi.org/10.1021/jacs.5b12354.
Kumar, A., D. G. Madden, M. Lusi, K. J. Chen, E. A. Daniels, T. Curtin, J. J. Perry IV, and M. J. Zaworotko, 2015: Direct air capture of CO2 by physisorbent materials. Angewandte Chemie International Edition, 54, 14 372−14 377,
Kumar, A., C. Hua, D. G. Madden, D. O’Nolan, K.-J. Chen, L.-A. J. Keane, J. J. Perry IV, and M. J. Zaworotko, 2017: Hybrid ultramicroporous materials (HUMs) with enhanced stability and trace carbon capture performance. Chemical Communications, 53, 5946−5949, https://doi.org/10.1039/C7CC02289A.
Lee, W. R., S. Y. Hwang, D. W. Ryu, K. S. Lim, S. S. Han, D. Moon, J. Choi, and C. S. Hong, 2014: Diamine-functionalized metal–organic framework: Exceptionally high CO2 capacities from ambient air and flue gas, ultrafast CO2 uptake rate, and adsorption mechanism. Energy & Environmental Science, 7, 744−751, https://doi.org/10.1039/C3EE42328J.
Li, L. Y., D. L. King, Z. M. Nie, and C. Howard, 2009: Magnesia-stabilized calcium oxide absorbents with improved durability for high temperature CO2 capture. Industrial & Engineering Chemistry Research, 48, 10 604−10 613,
Liao, P.-Q., and Coauthors, 2016: Putting an ultrahigh concentration of amine groups into a metal-organic framework for CO2 capture at low pressures. Chemical Science, 7, 6528−6533, https://doi.org/10.1039/C6SC00836D.
Lin, J. B., and Coauthors, 2021: A scalable metal-organic framework as a durable physisorbent for carbon dioxide capture. Science, 374, 1464−1469, https://doi.org/10.1126/science.abi7281.
Lu, W., J. P. Sculley, D. Yuan, R. Krishna, and H.-C. Zhou, 2013: Carbon dioxide capture from air using amine-grafted porous polymer networks. The Journal of Physical Chemistry C, 117, 4057−4061, https://doi.org/10.1021/jp311512q.
Lyndon, R., K. Konstas, B. P. Ladewig, P. D. Southon, C. J. Kepert, and M. R. Hill, 2013: Dynamic photo-switching in metal–organic frameworks as a route to low-energy carbon dioxide capture and release. Angewandte Chemie International Edition, 52, 3695−3698, https://doi.org/10.1002/anie.201206359.
Ma, X. L., X. X. Wang, and C. S. Song, 2009: “Molecular Basket” sorbents for separation of CO2 and H2S from various gas streams. Journal of the American Chemical Society, 131, 5777−5783, https://doi.org/10.1021/ja8074105.
Marks, S. D., K. Riascos-Rodriguez, R. R. Arrieta-Pérez, A. A. Yakovenko, J. Exley, P. G. Evans, and A. J. Hernández-Maldonado, 2020: Lattice expansion and ligand twist during CO2 adsorption in flexible Cu bipyridine metal–organic frameworks. Journal of Materials Chemistry A, 8, 18 903−18 915,
Martell, J. D., P. J. Milner, R. L. Siegelman, and J. R. Long, 2020: Kinetics of cooperative CO2 adsorption in diamine-appended variants of the metal–organic framework Mg2(dobpdc). Chemical Science, 11, 6457−6471, https://doi.org/10.1039/D0SC01087A.
Matsuda, R., 2014: Selectivity from flexibility. Nature, 509, 434−435, https://doi.org/10.1038/509434a.
McDonald, T. M., and Coauthors, 2015: Cooperative insertion of CO2 in diamine-appended metal-organic frameworks. Nature, 519, 303−308, https://doi.org/10.1038/nature14327.
Miguel, C. V., M. A. Soria, A. Mendes, and L. M. Madeira, 2017: A sorptive reactor for CO2 capture and conversion to renewable methane. Chemical Engineering Journal, 322, 590−602, https://doi.org/10.1016/j.cej.2017.04.024.
Modrow, A., D. Zargarani, R. Herges, and N. Stock, 2011: The first porous MOF with photoswitchable linker molecules. Dalton Transactions, 40, 4217−4222, https://doi.org/10.1039/c0dt01629b.
Carbon energy technology Co., Ltd (Beijing), 2020: The pilot project of carbon dioxide electrolysis to syngas successfully passed the on-site assessment. https://www.sohu.com/a/434528697_99896823. (in Chinese)
Mukherjee, S., and Coauthors, 2019: Trace CO2 capture by an ultramicroporous physisorbent with low water affinity. Science Advances, 5, eaax9171, https://doi.org/10.1126/sciadv.aax9171.
Nandi, S., and Coauthors, 2015: A single-ligand ultra-microporous MOF for precombustion CO2 capture and hydrogen purification. Science Advances, 1, e1500421, https://doi.org/10.1126/sciadv.1500421.
Park, J., D. Q. Yuan, K. T. Pham, J.-R. Li, A. Yakovenko, and H.-C. Zhou, 2012: Reversible alteration of CO2 adsorption upon photochemical or thermal treatment in a metal–organic framework. Journal of the American Chemical Society, 134, 99−102, https://doi.org/10.1021/ja209197f.
Peterson, A. A., F. Abild-Pedersen, F. Studt, J. Rossmeisl, and J. K. Nørskov, 2010: How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy & Environmental Science, 3, 1311−1315, https://doi.org/10.1039/C0EE00071J.
Potter, M. E., K. M. Cho, J. J. Lee, and C. W. Jones, 2017: Role of alumina basicity in CO2 uptake in 3-aminopropylsilyl-grafted alumina adsorbents. ChemSusChem, 10, 2192−2201, https://doi.org/10.1002/cssc.201700115.
Proaño, L., E. Tello, M. A. Arellano-Trevino, S. X. Wang, R. J. Farrauto, and M. Cobo, 2019: In-situ DRIFTS study of two-step CO2 capture and catalytic methanation over Ru, “Na2O”/Al2O3 dual functional material. Applied Surface Science, 479, 25−30, https://doi.org/10.1016/j.apsusc.2019.01.281.
Qiao, Y. Q., J. Y. Wang, Y. Zhang, W. L. Gao, T. Harada, L. Huang, T. A. Hatton, and Q. Wang, 2017: Alkali nitrates molten salt modified commercial MgO for intermediate-temperature CO2 capture: Optimization of the Li/Na/K ratio. Industrial & Engineering Chemistry Research, 56, 1509−1517, https://doi.org/10.1021/acs.iecr.6b04793.
Qu, C. F., X. Yang, D. Zhang, and X. L. Zhang, 2020: Estimating health co-benefits of climate policies in China: An application of the regional emissions-air quality-climate-health (reach) FRAMEWORK. Climate Change Economics, 11, 2041004, https://doi.org/10.1142/S2010007820410043.
Reller, C., M. Pöge, A. Lißner, and F. O. R. L. Mertens, 2014: Methanol from CO2 by organo-cocatalysis: CO2 capture and hydrogenation in one process step. Environmental Science & Technology, 48, 14 799−14 804,
Sabatino, F., A. Grimm, F. Gallucci, M. van Sint Annaland, G. J. Kramer, and M. Gazzani, 2021: A comparative energy and costs assessment and optimization for direct air capture technologies. Joule, 5, 2047−2076, https://doi.org/10.1016/j.joule.2021.05.023.
Sanz-Pérez, E. S., C. R. Murdock, S. A. Didas, and C. W. Jones, 2016: Direct capture of CO2 from ambient air. Chemical Reviews, 116, 11 840−11 876,
Sayari, A., and Y. Belmabkhout, 2010: Stabilization of amine-containing CO2 adsorbents: Dramatic effect of water vapor. Journal of the American Chemical Society, 132, 6312−6314, https://doi.org/10.1021/ja1013773.
Schneemann, A., V. Bon, I. Schwedler, I. Senkovska, S. Kaskel, and R. A. Fischer, 2014: Flexible metal–organic frameworks. Chemical Society Reviews, 43, 6062−6096, https://doi.org/10.1039/C4CS00101J.
Sen, R., A. Goeppert, S. Kar, and G. K. S. Prakash, 2020: Hydroxide based integrated CO2 capture from air and conversion to methanol. Journal of the American Chemical Society, 142, 4544−4549, https://doi.org/10.1021/jacs.9b12711.
Sen, T., Y. Kawajiri, and M. J. Realff, 2019: Adsorption process intensification through structured packing: A modeling study using zeolite 13X and a mixture of propylene and propane in hollow-fiber and packed beds. Industrial & Engineering Chemistry Research, 58, 5750−5767, https://doi.org/10.1021/acs.iecr.8b02189.
Sensharma, D., N. Y. Zhu, S. Tandon, S. Vaesen, G. W. Watson, and W. Schmitt, 2019: Flexible metal–organic frameworks for light-switchable CO2 sorption using an auxiliary ligand strategy. Inorganic Chemistry, 58, 9766−9772, https://doi.org/10.1021/acs.inorgchem.9b00768.
Shao, B., and Coauthors, 2021: Heterojunction-redox catalysts of FexCoyMg10CaO for high-temperature CO2 capture and in situ conversion in the context of green manufacturing. Energy & Environmental Science, 14, 2291−2301, https://doi.org/10.1039/D0EE03320K.
Shi, X. Y., H. Xiao, K. S. Lackner, and X. Chen, 2016: Capture CO2 from ambient air using nanoconfined ion hydration. Angewandte Chemie International Edition, 55, 4026−4029, https://doi.org/10.1002/anie.201507846.
Shi, X. Y., H. Xiao, H. Azarabadi, J. Z. Song, X. L. Wu, X. Chen, and K. S. Lackner, 2020: Sorbents for the direct capture of CO2 from ambient air. Angewandte Chemie International Edition, 59, 6984−7006, https://doi.org/10.1002/anie.201906756.
Shih, C. F., T. Zhang, J. H. Li, and C. L. Bai, 2018: Powering the future with liquid sunshine. Joule, 2, 1925−1949, https://doi.org/10.1016/j.joule.2018.08.016.
Song, Y. F., W. Chen, C. C. Zhao, S. G. Li, W. Wei, and Y. H. Sun, 2017: Metal-free nitrogen-doped mesoporous carbon for electroreduction of CO2 to ethanol. Angewandte Chemie International Edition, 56, 10 840−10 844,
Song, Y. F., S. B. Wang, W. Chen, S. G. Li, G. H. Feng, W. Wei, and Y. H. Sun, 2020: Enhanced ethanol production from CO2 electroreduction at micropores in nitrogen-doped mesoporous carbon. ChemSusChem, 13, 293−297, https://doi.org/10.1002/cssc.201902833.
Stavitski, E., and Coauthors, 2011: Complexity behind CO2 Capture on NH2-MIL-53(Al). Langmuir, 27, 3970−3976, https://doi.org/10.1021/la1045207.
Stevenson, S. A., 2019: Thermodynamic considerations in CO2 utilization. AIChE Journal, 65, e16695, https://doi.org/10.1002/aic.16695.
Sun, H. M., J. Q. Wang, J. H. Zhao, B. X. Shen, J. Shi, J. Huang, and C. F. Wu, 2019: Dual functional catalytic materials of Ni over Ce-modified CaO sorbents for integrated CO2 capture and conversion. Applied Catalysis B: Environmental, 244, 63−75, https://doi.org/10.1016/j.apcatb.2018.11.040.
Sun, H. M., Y. Zhang, S. L. Guan, J. Huang, and C. F. Wu, 2020: Direct and highly selective conversion of captured CO2 into methane through integrated carbon capture and utilization over dual functional materials. Journal of CO2 Utilization, 38, 262−272,
Taylor, M. K., and Coauthors, 2018: Near-perfect CO2/CH4 selectivity achieved through reversible guest templating in the flexible metal–organic framework Co(bdp). Journal of the American Chemical Society, 140, 10 324−10 331,
Terlouw, T., K. Treyer, C. Bauer, and M. Mazzotti, 2021a: Life cycle assessment of direct air carbon capture and storage with low-carbon energy sources. Environmental Science & Technology, 55, 11 397−11 411,
Terlouw, T., C. Bauer, L. Rosa, and M. Mazzotti, 2021b: Life cycle assessment of carbon dioxide removal technologies: A critical review. Energy & Environmental Science, 14, 1701−1721, https://doi.org/10.1039/d0ee03757e.
Uesaka, M., Y. Saito, S. Yoshioka, Y. Domoto, M. Fujita, and Y. Inokuma, 2018: Oligoacetylacetones as shapable carbon chains and their transformation to oligoimines for construction of metal-organic architectures. Communications Chemistry, 1, 23, https://doi.org/10.1038/s42004-018-0021-3.
Veselovskaya, J. V., P. D. Parunin, O. V. Netskina, L. S. Kibis, A. I. Lysikov, and A. G. Okunev, 2018: Catalytic methanation of carbon dioxide captured from ambient air. Energy, 159, 766−773, https://doi.org/10.1016/j.energy.2018.06.180.
Wang, X., and Coauthors, 2020: Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation. Nature Energy, 5, 478−486, https://doi.org/10.1038/s41560-020-0607-8.
Xiong, L. K., and Coauthors, 2021: Geometric modulation of local CO flux in Ag@Cu2O nanoreactors for steering the CO2RR pathway toward high-efficacy methane production. Advanced Materials, 33, 2101741, https://doi.org/10.1002/ADMA.202101741.
Xu, H. P., and Coauthors, 2020: Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper. Nature Energy, 5, 623−632, https://doi.org/10.1038/s41560-020-0666-x.
Xu, J. Y., and Coauthors, 2016: Revealing the origin of activity in nitrogen-doped nanocarbons towards electrocatalytic reduction of carbon dioxide. ChemSusChem, 9, 1085−1089, https://doi.org/10.1002/cssc.201600202.
Xu, X. C., C. S. Song, J. M. Andresen, B. G. Miller, and A. W. Scaroni, 2002: Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture. Energy & Fuels, 16, 1463−1469, https://doi.org/10.1021/ef020058u.
Yadav, R. M., and Coauthors, 2022: Amine-functionalized carbon nanodot electrocatalysts converting carbon dioxide to methane. Advanced Materials, 34, 2105690,
Yan, S., and Coauthors, 2021: Electron localization and lattice strain induced by surface lithium doping enable ampere-level electrosynthesis of formate from CO2. Angewandte Chemie International Edition, 60, 25 741−25 745,
Yang, H., M. Singh, and J. Schaefer, 2018: Humidity-swing mechanism for CO2 capture from ambient air. Chemical Communications, 54, 4915−4918, https://doi.org/10.1039/c8cc02109k.
Yang, K. D., and Coauthors, 2016: Graphene quantum sheet catalyzed silicon photocathode for selective CO2 conversion to CO. Advanced Functional Materials, 26, 233−242, https://doi.org/10.1002/adfm.201502751.
Yuan, S., and Coauthors, 2018: Stable metal–organic frameworks: Design, synthesis, and applications. Advanced Materials, 30, 1704303, https://doi.org/10.1002/adma.201704303.
Yue, M. C, K. Imai, Y. Miura, and Y. Hoshino, 2017: Design and preparation of thermo-responsive vinylamine-containing micro-gel particles for reversible absorption of carbon dioxide. Polymer Journal, 49, 601−606, https://doi.org/10.1038/pj.2017.28.
Zhang, X., and Coauthors, 2020: Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction. Nature Energy, 5, 684−692, https://doi.org/10.1038/s41560-020-0667-9.
Zheng, Q. H., R. Farrauto, and A. C. Nguyen, 2016: Adsorption and methanation of flue gas CO2 with dual functional catalytic materials: A parametric study. Industrial & Engineering Chemistry Research, 55, 6768−6776, https://doi.org/10.1021/acs.iecr.6b01275.
Zhong, M., and Coauthors, 2020: Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature, 581, 178−183, https://doi.org/10.1038/s41586-020-2242-8.
Zhou, Z. J., and Coauthors, 2020: 2D-layered Ni-MgO-Al2O3 nanosheets for integrated capture and methanation of CO2. ChemSusChem, 13, 360−368, https://doi.org/10.1002/cssc.201902828.
Zhu, X. C., T. S. Ge, J. Y. Wu, F. Yang, and R. Z. Wang, 2021: Large-scale applications and challenges of adsorption-based carbon capture technologies. Chinese Science Bulletin, 66, 2861−2877, https://doi.org/10.1360/TB-2021-0017.