Baergen, A. M., and D. J. Donaldson, 2013: Photochemical renoxification of nitric acid on real urban grime. Environmental Science & Technology, 47(2), 815−820, https://doi.org/10.1021/es3037862.
Cao, Y. F., X. Qiao, P. K. Hopke, Q. Ying, Y. Y. Zhang, Y. Y. Zeng, Y. P. Yuan, and Y. Tang, 2020: Ozone pollution in the west China rain zone and its adjacent regions, southwestern China: Concentrations, ecological risk, and sources. Chemosphere, 256, 127008, https://doi.org/10.1016/j.chemosphere.2020.127008.
Carter, W. P. L., 2010: Development of the SAPRC-07 chemical mechanism. Atmos. Environ., 44(40), 5324−5335, https://doi.org/10.1016/j.atmosenv.2010.01.026.
Carter, W. P. L., and G. Heo, 2013: Development of revised SAPRC aromatics mechanisms. Atmos. Environ., 77, 404−414, https://doi.org/10.1016/j.atmosenv.2013.05.021.
Carter, W. P. L., D. M. Luo, I. L. Malkina, and J. A. Pirece, 1993: An experimental and modeling study of the photochemical ozone reactivity of acetone. Final report to chemical manufacturers association contract No. KET-ACE-CRC-2.0, 43 pp.
Carter, W. P. L., J. A. Pierce, D. M. Luo, and I. L. Malkina, 1995: Environmental chamber study of maximum incremental reactivities of volatile organic compounds. Atmos. Environ., 29(18), 2499−2511, https://doi.org/10.1016/1352-2310(95)00149-S.
Chen, L. H., and Coauthors, 2020: The effects of humidity and ammonia on the chemical composition of secondary aerosols from toluene/NOx photo-oxidation. Science of The Total Environment, 728, 138671, https://doi.org/10.1016/j.scitotenv.2020.138671.
Chi, X. Y., and Coauthors, 2018: Observations of ozone vertical profiles and corresponding precursors in the low troposphere in Beijing, China. Atmospheric Research, 213, 224−235, https://doi.org/10.1016/j.atmosres.2018.06.012.
da Silva, D. B. N., E. M. Martins, and S. M. Corrêa, 2016: Role of carbonyls and aromatics in the formation of tropospheric ozone in Rio de Janeiro, Brazil. Environmental Monitoring and Assessment, 188(5), 289, https://doi.org/10.1007/s10661-016-5278-3.
Derwent, R. G., M. E. Jenkin, S. M. Saunders, and M. J. Pilling, 1998: Photochemical ozone creation potentials for organic compounds in northwest Europe calculated with a master chemical mechanism. Atmos. Environ., 32(14-15), 2429−2441, https://doi.org/10.1016/S1352-2310(98)00053-3.
Derwent, R. G., M. E. Jenkin, N. R. Passant, and M. J. Pilling, 2007: Photochemical ozone creation potentials (POCPs) for different emission sources of organic compounds under European conditions estimated with a Master Chemical Mechanism. Atmos. Environ., 41(12), 2570−2579, https://doi.org/10.1016/j.atmosenv.2006.11.019.
Dominutti, P., T. Nogueira, A. Fornaro, and A. Borbon, 2020: One decade of VOCs measurements in Sao Paulo megacity: Composition, variability, and emission evaluation in a biofuel usage context. Science of The Total Environment, 738, 139790, https://doi.org/10.1016/j.scitotenv.2020.139790.
Dong, D., M. Shao, Y. Li, S. H. Lu, Y. J. Wang, Z. Ji, and D. G. Tang, 2014: Carbonyl emissions from heavy-duty diesel vehicle exhaust in China and the contribution to ozone formation potential. Journal of Environmental Sciences, 26(1), 122−128, https://doi.org/10.1016/S1001-0742(13)60387-3.
Dong, Y. M., J. Li, J. P. Guo, Z. J. Jiang, Y. Q. Chu, L. Chang, Y. Yang, and H. Liao, 2020: The impact of synoptic patterns on summertime ozone pollution in the North China Plain. Science of The Total Environment, 735, 139559, https://doi.org/10.1016/j.scitotenv.2020.139559.
Flowers, B. A., J. F. Stanton, and W. R. Simpson, 2007: Wavelength dependence of nitrate radical quantum yield from peroxyacetyl nitrate photolysis: Experimental and theoretical studies. The Journal of Physical Chemistry A, 111(45), 11 602−11 607, https://doi.org/10.1021/jp0749118.
Gu, Y. Y., and Coauthors, 2019: Emission characteristics of 99 NMVOCs in different seasonal days and the relationship with air quality parameters in Beijing, China. Ecotoxicology and Environmental Safety, 169, 797−806, https://doi.org/10.1016/j.ecoenv.2018.11.091.
Guérette, E. A., and Coauthors, 2020: Evaluation of regional air quality models over Sydney, Australia: Part 2, Comparison of PM2.5 and ozone. Atmosphere, 11(3), 233, https://doi.org/10.3390/atmos11030233.
Guo, S. J., X. L. He, M. Chen, J. H. Tan, and Y. H. Wang, 2014: Photochemical production of atmospheric carbonyls in a rural area in southern China. Archives of Environmental Contamination and Toxicology, 66(4), 594−605, https://doi.org/10.1007/s00244-014-0013-y.
Hu, G. S., Y. F. Xu, and L. Jia, 2011: Effects of relative humidity on the characterization of a photochemical smog chamber. Journal of Environmental Sciences, 23(12), 2013−2018, https://doi.org/10.1016/S1001-0742(10)60665-1.
Janik, R., M. Kubov, and B. Schieber, 2020: The ground-level ozone concentration in beech (Fagus sylvatica L.) forests in the West Carpathian Mountains. Environmental Monitoring and Assessment, 192(4), 233, https://doi.org/10.1007/s10661-020-8176-7.
Jenkin, M. E., S. M. Saunders, and M. J. Pilling, 1997: The tropospheric degradation of volatile organic compounds: A protocol for mechanism development. Atmos. Environ., 31(1), 81−104, https://doi.org/10.1016/S1352-2310(96)00105-7.
Jenkin, M. E., S. M. Saunders, V. Wagner, and M. J. Pilling, 2003: Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part B): Tropospheric degradation of aromatic volatile organic compounds. Atmospheric Chemistry and Physics, 3, 181−193, https://doi.org/10.5194/acp-3-181-2003.
Jenkin, M. E., J. C. Young, and A. R. Rickard, 2015: The MCM v3.3.1 degradation scheme for isoprene. Atmospheric Chemistry and Physics, 15(20), 11 433−11 459, https://doi.org/10.5194/acp-15-11433-2015.
Jia, L., 2007: A study of the kinetics of alkene ozonolysis and ozone formation reactivity of isopentane. M.S. thesis, Beijing Normal University. (in Chinese with English abstract)
Jia, L., and Y. F. Xu, 2016: Ozone and secondary organic aerosol formation from Ethylene-NOx-NaCl irradiations under different relative humidity conditions. Journal of Atmospheric Chemistry volume, 73(1), 81−100, https://doi.org/10.1007/s10874-015-9317-1.
Jia, L., and Y. F. Xu, 2018: Different roles of water in secondary organic aerosol formation from toluene and isoprene. Atmospheric Chemistry and Physics, 18(11), 8137−8154, https://doi.org/10.5194/acp-18-8137-2018.
Jia, L., Y. F. Xu, M. F. Ge, L. Du, and G. S. Zhuang, 2009: Smog chamber studies of ozone formation potentials for isopentane. Chinese Science Bulletin, 54(24), 4624−4632, https://doi.org/10.1007/s11434-009-0482-y.
Jia, L., Y. F. Xu, and Y. Z. Shi, 2011: Characterization of photochemical smog chamber and initial experiments. Environmental Science, 32, 351−361. (in Chinese with English abstract
Kalabokas, P., and Coauthors, 2020: A study of the influence of tropospheric subsidence on spring and summer surface ozone concentrations at the JRC Ispra station in northern Italy. Atmospheric Chemistry and Physics, 20(4), 1861−1885, https://doi.org/10.5194/acp-20-1861-2020.
Kinose, Y., Y. Fukamachi, S. Okabe, H. Hiroshima, M. Watanabe, and T. Izuta, 2020: Toward an impact assessment of ozone on plant carbon fixation using a process-based plant growth model: A case study of Fagus crenata grown under different soil nutrient levels. Science of The Total Environment, 716, 137008, https://doi.org/10.1016/j.scitotenv.2020.137008.
Li, Q. Q., and Coauthors, 2020: An investigation into the role of VOCs in SOA and ozone production in Beijing, China. Science of The Total Environment, 720, 137536, https://doi.org/10.1016/j.scitotenv.2020.137536.
Liang, T. T., J. P. Niu, S. Y. Zhang, Q. Q. Song, and J. Zhou, 2020: Effects of high-temperature heat wave and ozone on hypertensive rats. International Journal of Biometeorology, 64(7), 1039−1050, https://doi.org/10.1007/s00484-019-01788-w.
Libuda, H. G., and F. Zabel, 1995: Uv absorption cross sections of acetyl peroxynitrate and trifluoroacetyl peroxynitrate at 298 K. Berichte der Bunsengesellschaft für physikalische Chemie, 99(10), 1205−1213, https://doi.org/10.1002/bbpc.199500061.
Luo, H., L. Jia, Q. Wan, T. C. An, and Y. J. Wang, 2019: Role of liquid water in the formation of O3 and SOA particles from 1:2,3-trimethylbenzene. Atmos. Environ., 217, 116955, https://doi.org/10.1016/j.atmosenv.2019.116955.
Luo, H., G. Y. Li, J. Y. Chen, Y. J. Wang, and T. C. An, 2020: Reactor characterization and primary application of a state of art dual-reactor chamber in the investigation of atmospheric photochemical processes. Journal of Environmental Sciences, 98, 161−168, https://doi.org/10.1016/j.jes.2020.05.021.
Ma, X. Y., H. L. Jia, T. Sha, J. L. An, and R. Tian, 2019: Spatial and seasonal characteristics of particulate matter and gaseous pollution in China: Implications for control policy. Environmental Pollution, 248, 421−428, https://doi.org/10.1016/j.envpol.2019.02.038.
Saengsai, S., and W. Jinsart, 2015: Evaluation of urban ozone formation by photochemical ozone creation potential indices and generalized additive model. Proc. Int. Conf. on Biological, Civil and Environmental Engineering, Bali, Indonesia.
Seinfeld, J. H., and S. N. Pandis, 2006: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. 2nd ed. Wiley, 1149 pp.
Seltzer, K. M., D. T. Shindell, P. Kasibhatla, and C. S. Malley, 2020: Magnitude, trends, and impacts of ambient long-term ozone exposure in the United States from 2000 to 2015. Atmospheric Chemistry and Physics, 20(3), 1757−1775, https://doi.org/10.5194/acp-20-1757-2020.
Shi, Y. Z., Y. F. Xu, and L. Jia, 2012: Development and application of atmospheric chemical mechanisms. Climatic and Environmental Research, 17(1), 112−124, https://doi.org/10.3878/j.issn.1006-9585.2011.10061. (in Chinese with English abstract
Talukdar, R. K., J. B. Burkholder, A. M. Schmoltner, J. M. Roberts, R. R. Wilson, and A. R. Ravishankara, 1995: Investigation of the loss processes for peroxyacetyl nitrate in the atmosphere: Uv photolysis and reaction with OH. J. Geophys. Res., 100(D7), 14 163−14 173, https://doi.org/10.1029/95JD00545.
Thera, B. T. P., and Coauthors, 2019: Composition and variability of gaseous organic pollution in the port megacity of Istanbul: Source attribution, emission ratios, and inventory evaluation. Atmospheric Chemistry and Physics, 19(23), 15 131−15 156, https://doi.org/10.5194/acp-19-15131-2019.
Venecek, M. A., W. P. L. Carter, and M. J. Kleeman, 2018: Updating the SAPRC Maximum Incremental Reactivity (MIR) scale for the United States from 1988 to 2010. Journal of the Air & Waste Management Association, 68(12), 1301−1316, https://doi.org/10.1080/10962247.2018.1498410.
Wang, T., L. K. Xue, P. Brimblecombe, Y. F. Lam, L. Li, and L. Zhang, 2017: Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects. Science of The Total Environment, 575, 1582−1596, https://doi.org/10.1016/j.scitotenv.2016.10.081.
Wang, W. G., K. Li, L. Zhou, M. F. Ge, S. Q. Hou, S. R. Tong, Y. J. Mu, and L. Jia, 2015: Evaluation and application of dual-reactor chamber for studying atmospheric oxidation processes and mechanisms. Acta Physico-Chimica Sinica, 31, 1251−1259, https://doi.org/10.3866/PKU.WHXB201504161.
Ye, C. X., H. L. Gao, N. Zhang, and X. L. Zhou, 2016: Photolysis of nitric acid and nitrate on natural and artificial surfaces. Environmental Science & Technology, 50(7), 3530−3536, https://doi.org/10.1021/acs.est.5b05032.
Ye, C. X., N. Zhang, H. L. Gao, and X. L. Zhou, 2019: Matrix effect on surface-catalyzed photolysis of nitric acid. Scientific Reports, 9, 4351, https://doi.org/10.1038/s41598-018-37973-x.
Zhao, T. Y., and Coauthors, 2020: Depression and anxiety with exposure to ozone and particulate matter: An epidemiological claims data analysis. International Journal of Hygiene and Environmental Health, 228, 113562, https://doi.org/10.1016/j.ijheh.2020.113562.
Zong, R. H., L. K. Xue, T. Wang, and W. X. Wang, 2018: Inter-comparison of the Regional Atmospheric Chemistry Mechanism (RACM2) and Master Chemical Mechanism (MCM) on the simulation of acetaldehyde. Atmos. Environ., 186, 144−149, https://doi.org/10.1016/j.atmosenv.2018.05.013.