Bao, Q., and J. Li, 2020: Progress in climate modeling of precipitation over the Tibetan Plateau. National Science Review, 7(3), 486−487, https://doi.org/10.1093/nsr/nwaa006.
Bao, Q., X. F. Wu, J. X. Li, L. Wang, B. He, X. C. Wang, Y. M. Liu, and G. X. Wu, 2018: Outlook for El Niño and the Indian Ocean Dipole in autumn-winter 2018−2019. Chinese Science Bulletin, 64(1), 73−78, https://doi.org/10.1360/N972018-00913. (in Chinese with English abstract
Bintanja, R., E. C. Van der Linden, and W. Hazeleger, 2012: Boundary layer stability and Arctic climate change: A feedback study using EC-Earth. Climate Dyn., 39(11), 2659−2673, https://doi.org/10.1007/s00382-011-1272-1.
Bretherton, C. S., and S. Park, 2009: A new moist turbulence parameterization in the Community Atmosphere Model. J. Climate, 22(12), 3422−3448, https://doi.org/10.1175/2008jcli2556.1.
Cassano, E. N., J. J. Cassano, M. E. Higgins, and M. C. Serreze, 2014: Atmospheric impacts of an Arctic sea ice minimum as seen in the Community Atmosphere Model. International Journal of Climatology, 34(3), 766−779, https://doi.org/10.1002/joc.3723.
Clough, S. A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, Cady-Pereira, K., S. Boukabara, and P. D. Brown, 2005: Atmospheric radiative transfer modeling: A summary of the AER codes. Journal of Quantitative Spectroscopy and Radiative Transfer, 91(2), 233−244, https://doi.org/10.1016/j.jqsrt.2004.05.058.
Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nature Geoscience, 7(9), 627−637, https://doi.org/10.1038/ngeo2234.
Cowtan, K., and R. G. Way, 2014: Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Quart. J. Roy. Meteor. Soc., 140(683), 1935−1944, https://doi.org/10.1002/qj.2297.
Curry, J. A., J. L. Schramm, and E. E. Ebert, 1995: Sea ice-albedo climate feedback mechanism. J. Climate, 8(2), 240−247, https://doi.org/10.1175/1520-0442(1995)008<0240:SIACFM>2.0.CO;2.
Dai, A. G., D. H. Luo, M. R. Song, and J. P. Liu, 2019: Arctic amplification is caused by sea-ice loss under increasing CO2. Nature Communications, 10(1), 121, https://doi.org/10.1038/s41467-018-07954-9.
Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937−1958, https://doi.org/10.5194/gmd-9-1937-2016.
Gao, K. L., A. M. Duan, D. L. Chen, and G. X. Wu, 2019: Surface energy budget diagnosis reveals possible mechanism for the different warming rate among Earthos three poles in recent decades. Science Bulletin, 64(16), 1140−1143, https://doi.org/10.1016/j.scib.2019.06.023.
Goosse, H., and Coauthors, 2018: Quantifying climate feedbacks in polar regions. Nature Communications, 9(1), 1919, https://doi.org/10.1038/s41467-018-04173-0.
Gramling, C., 2015: Arctic impact. Science, 347, 818−821, https://doi.org/10.1126/science.347.6224.818.
Graversen, R. G., and M. H. Wang, 2009: Polar amplification in a coupled climate model with locked albedo. Climate Dyn., 33(5), 629−643, https://doi.org/10.1007/s00382-009-0535-6.
Guo, Y. Y., Y. Q. Yu, P. F. Lin, H. L. Liu, B. He, Q. Bao, S. W. Zhao, and X. W. Wang, 2020: Overview of the CMIP6 historical experiment datasets with the climate system model CAS FGOALS-f3-L. Adv. Atmos. Sci., 37, 1057−1066, https://doi.org/10.1007/s00376-020-2004-4.
Hall, A., 2004: The role of surface albedo feedback in climate. J. Climate, 17(7), 1550−1568, https://doi.org/10.1175/1520-0442(2004)017<1550:TROSAF>2.0.CO;2.
Harris, L. M., and S. J. Lin, 2014: Global-to-regional nested grid climate simulations in the GFDL high resolution atmospheric model. J. Climate, 27(13), 4890−4910, https://doi.org/10.1175/JCLI-D-13-00596.1.
Haustein, K., M. R. Allen, P. M. Forster, F. E. L. Otto, D. M. Mitchell, H. D. Matthews and D. J. Frame, 2017: A real-time Global Warming Index. Sci. Rep., 7, 15417, https://doi.org/10.1038/s41598-017-14828-5.
He, B., and Coauthors, 2019: CAS FGOALS-f3-L model datasets for CMIP6 historical atmospheric model Intercomparison project simulation. Adv. Atmos. Sci., 36(8), 771−778, https://doi.org/10.1007/s00376-019-9027-8.
He, B., and Coauthors, 2020: CAS FGOALS-f3-L model dataset descriptions for CMIP6 DECK experiments. Atmos. Ocean. Sci. Lett., 13, 582−588, https://doi.org/10.1080/16742834.2020.1778419.
Holland, M. M., and C. M. Bitz, 2003: Polar amplification of climate change in coupled models. Climate Dyn., 21(3−4), 221−232, https://doi.org/10.1007/s00382-003-0332-6.
Li, J. X., Q. Bao, Y. M. Liu, G. X. Wu, L. Wang, B. He, X. C. Wang, and J. D. Li, 2019: Evaluation of FAMIL2 in simulating the climatology and seasonalʜtoʜinterannual variability of tropical cyclone characteristics. Journal of Advances in Modeling Earth Systems, 11, 1117−1136, https://doi.org/10.1029/2018MS001506.
Lin, S. J., 2004: A pvertically Lagrangianq finite-volume dynamical core for global models. Mon. Wea. Rev., 132(10), 2293−2307, https://doi.org/10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2.
Lin, Y. L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteorol., 22(6), 1065−1092, https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.
Lu, J. H., and M. Cai, 2009: Seasonality of polar surface warming amplification in climate simulations. Geophys. Res. Lett., 36(16), L16704, https://doi.org/10.1029/2009GL040133.
Magnusdottir, G., C. Deser, and Saravanan, R, 2004: The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part I: Main features and storm track characteristics of the response. J. Climate, 17(5), 857−876, https://doi.org/10.1175/1520-0442(2004)017<0857:TEONAS>2.0.CO;2.
Manabe, S., and R. T. Wetherald, 1975: The effects of doubling the CO2 concentration on the climate of a general circulation model. J. Atmos. Sci., 32(1), 3−15, https://doi.org/10.1175/1520-0469(1975)032<0003:TEODTC>2.0.CO;2.
Manabe, S., and R. J. Stouffer, 1994: Multiple-century response of a coupled ocean-atmosphere model to an increase of atmospheric carbon dioxide. J. Climate, 7(1), 5−23, https://doi.org/10.1175/1520-0442(1994)007<0005:MCROAC>2.0.CO;2.
Mori, M., M. Watanabe, H. Shiogama, J. Inoue, and M. Kimoto, 2014: Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nature Geoscience, 7(12), 869−873, https://doi.org/10.1038/ngeo2277.
Mori, M., Y. Kosaka, M. Watanabe, H. Nakamura, and M. Kimoto, 2019: A reconciled estimate of the influence of Arctic sea-ice loss on recent Eurasian cooling. Nature Climate Change, 9, 123−129, https://doi.org/10.1038/s41558-018-0379-3.
Oleson, K. W., and Coauthors, 2010: Technical description of version 4.0 of the Community Land Model (CLM). No. NCAR/TN–478 + STR, 173 pp.
Overland, J., J. A. Francis, R. Hall, E. Hanna, S.-J. Kim, and T. Vihma, 2015: The melting Arctic and midlatitude weather patterns: Are they connected? J. Climate, 28(20), 7917−7932, https://doi.org/10.1175/JCLI-D-14-00822.1.
Pithan, F., and T. Mauritsen, 2014: Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nature Geoscience, 7(3), 181−184, https://doi.org/10.1038/ngeo2071.
Putman, W. M., and S. J. Lin, 2007: Finite-volume transport on various cubed-sphere grids. J. Comput. Phys., 227(1), 55−78, https://doi.org/10.1016/j.jcp.2007.07.022.
Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108(D14), 4407, https://doi.org/10.1029/2002JD002670.
Screen, J. A., 2017: Far-flung effects of Arctic warming. Nature Geoscience, 10(4), 253−254, https://doi.org/10.1038/ngeo2924.
Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464(7293), 1334−1337, https://doi.org/10.1038/nature09051.
Screen, J. A., C. Deser, and I. Simmonds, 2012: Local and remote controls on observed Arctic warming. Geophys. Res. Lett., 39(10), L10709, https://doi.org/10.1029/2012GL051598.
Screen, J. A., C. Deser, I. Simmonds, and R. Tomas, 2014: Atmospheric impacts of Arctic sea-ice loss, 1979−2009: Separating forced change from atmospheric internal variability. Climate Dyn., 43(1−2), 333−344, https://doi.org/10.1007/s00382-013-1830-9.
Screen, J. A., and Coauthors, 2018: Consistency and discrepancy in the atmospheric response to Arctic sea-ice loss across climate models. Nature Geoscience, 11(3), 155−163, https://doi.org/10.1038/s41561-018-0059-y.
Seierstad, I. A., and J. Bader, 2009: Impact of a projected future Arctic sea ice reduction on extratropical storminess and the NAO. Climate Dyn., 33(7−8), 937, https://doi.org/10.1007/s00382-008-0463-x.
Serreze, M. C., and J. A. Francis, 2006: The Arctic amplification debate. Climatic Change, 76(3−4), 241−264, https://doi.org/10.1007/s10584-005-9017-y.
Serreze, M. C., and R. G. Barry, 2011: Processes and impacts of Arctic amplification: A research synthesis. Global and Planetary Change, 77(1−2), 85−96, https://doi.org/10.1016/j.gloplacha.2011.03.004.
Serreze, M. C., A. P. Barrett, J. C. Stroeve, D. N. Kindig, and M. M. Holland, 2009: The emergence of surface-based Arctic amplification. The Cryosphere, 3(1), 11−19, https://doi.org/10.5194/tc-3-11-2009.
Sévellec, F., A. V. Fedorov, and W. Liu, 2017: Arctic sea-ice decline weakens the Atlantic meridional overturning circulation. Nature Climate Change, 7(8), 604−610, https://doi.org/10.1038/nclimate3353.
Shepherd, T. G., 2016: Effects of a warming Arctic. Science, 353(6303), 989−990, https://doi.org/10.1126/science.aag2349.
Smith, D. M., and Coauthors, 2019: The Polar Amplification Model Intercomparison Project (PAMIP) contribution to CMIP6: Investigating the causes and consequences of polar amplification. Geoscientific Model Development, 12(3), 1139−1164, https://doi.org/10.5194/gmd-12-1139-2019.
Stocker, T. F., and Coauthors, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 1535 pp.
Stuecker, M. F., and Coauthors, 2018: Polar amplification dominated by local forcing and feedbacks. Nature Climate Change, 8(12), 1076−1081, https://doi.org/10.1038/s41558-018-033.
Sun, L. T., C. Deser, R. A. Tomas, and M. Alexander, 2020: Global coupled climate response to polar sea ice loss: Evaluating the effectiveness of different iceʜconstraining approaches. Geophys. Res. Lett., 47(3), e2019GL085788, https://doi.org/10.1029/2019GL085788.
Taylor, P. C., M. Cai, A. X. Hu, J. Meehl, W. Washington, and G. J. Zhang, 2013: A decomposition of feedback contributions to polar warming amplification. J. Climate, 26(18), 7023−7043, https://doi.org/10.1175/JCLI-D-12-00696.1.
Wang, X. C., and M. H. Zhang, 2014: Vertical velocity in shallow convection for different plume types. Journal of Advances in Modeling Earth Systems, 6(2), 478−489, https://doi.org/10.1002/2014MS000318.
Xie, Y. K., G. X. Wu, Y. M. Liu, and J. P. Huang, 2020: Eurasian cooling linked with Arctic warming: Insights from PV dynamics. J. Climate, 33(7), 2627−2644, https://doi.org/10.1175/JCLI-D-19-0073.1.
Xu, K. M., and D. A. Randall, 1996: A semiempirical cloudiness parameterization for use in climate models. J. Atmos. Sci., 53(21), 3084−3102, https://doi.org/10.1175/1520-0469(1996)053<3084:ASCPFU>2.0.CO;2.
Zhang, P. F., Y. T. Wu, I. R. Simpson, K. L. Smith, X. D. Zhang, B. De, and P. Callaghan, 2018: A stratospheric pathway linking a colder Siberia to Barents-Kara Sea sea ice loss. Science Advances, 4(7), eaat6025, https://doi.org/10.1126/sciadv.aat6025.
Zhou, L., and Coauthors, 2015: Global energy and water balance: Characteristics from Finiteʜvolume Atmospheric Model of the IAP/LASG (FAMIL 1). Journal of Advances in Modeling Earth Systems, 7(1), 1−20, https://doi.org/10.1002/2014ms000349.