Allen, M. R., and P. A. Stott, 2003: Estimating signal amplitudes in optimal fingerprinting, part I: Theory. Climate Dyn., 21, 477−491, https://doi.org/10.1007/s00382-003-0313-9.
Beniston, M., 2004: The 2003 heat wave in Europe: A shape of things to come. An analysis based on Swiss climatological data and model simulations. Geophys. Res. Lett., 31, L02202, https://doi.org/10.1029/2003GL018857.
Bindoff, N. L., and Coauthors, 2013: Detection and attribution of climate change: From global to regional. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds., Cambridge University Press, 867−952.
Bowler, D. E., L. Buyung-Ali, T. M. Knight, and A. S. Pullin, 2010: Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape and Urban Planning, 97, 147−155, https://doi.org/10.1016/j.landurbplan.2010.05.006.
Chen, L., and E. Ng, 2012: Outdoor thermal comfort and outdoor activities: A review of research in the past decade. Cities, 29, 118−125, https://doi.org/10.1016/j.cities.2011.08.006.
Chen, W., and B. W. Dong, 2019: Anthropogenic impacts on recent decadal change in temperature extremes over China: Relative roles of greenhouse gases and anthropogenic aerosols. Climate Dyn., 52, 3643−3660, https://doi.org/10.1007/s00382-018-4342-9.
Chen, X. L., and T. J. Zhou, 2018: Relative contributions of external SST forcing and internal atmospheric variability to July–August heat waves over the Yangtze River valley. Climate Dyn., 51, 4403−4419, https://doi.org/10.1007/s00382-017-3871-y.
Cheng, V., E. Ng, C. Chan, and B. Givoni, 2010: Outdoor thermal comfort study in a sub-tropical climate: A longitudinal study based in Hong Kong. International Journal of Biometeorology, 56, 43−56, https://doi.org/10.1007/s00484-010-0396-z.
Chou, C., J. D. Neelin, C. A. Chen, and J. Y. Tu, 2009: Evaluating the “rich-get-richer” mechanism in tropical precipitation change under global warming. J. Climate, 22, 1982−2005, https://doi.org/10.1175/2008JCLI2471.1.
Ding, Y. H., and J. C. L. Chan, 2005: The East Asian summer monsoon: An overview. Meteorol. Atmos. Phys., 89, 117−142, https://doi.org/10.1007/s00703-005-0125-z.
Ding, Y. H., and Coauthors, 2014: Interdecadal variability of the East Asian winter monsoon and its possible links to global climate change. Journal of Meteorological Research, 28, 693−713, https://doi.org/10.1007/s13351-014-4046-y.
Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9, 1937−1958, https://doi.org/10.5194/gmd-9-1937-2016.
Fanger, P. O., 1970: Thermal Comfort Analysis and Applications in Environmental Engineering. McGraw-Hill Companies, New York.
Gao, X. J., and Coauthors, 2018: Future changes in thermal comfort conditions over China based on multi-RegCM4 simulations. Atmos. Ocean. Sci. Lett., 11, 291−299, https://doi.org/10.1080/16742834.2018.1471578.
Giorgi, F., and X. Q. Bi, 2000: A study of internal variability of a regional climate model. J. Geophys. Res., 105, 29 503--29 521,
Han, L., Z. B. Sun, J. He, B. H. Zhang, M. Y. Lv, X. L. Zhang, and C. J. Zheng, 2020: Estimating the mortality burden attributable to temperature and PM2.5 from the perspective of atmospheric flow. Environmental Research Letters, 15, 124059, https://doi.org/10.1088/1748-9326/abc8b9.
Hansen, J., and S. Lebedeff, 1987: Global trends of measured surface air temperature. J. Geophys. Res., 92, 13 345--13 372,
Hao, X., S. P. He, H. J. Wang, and T. T. Han, 2019: Quantifying the contribution of anthropogenic influence to the East Asian winter monsoon in 1960-2012. Atmospheric Chemistry and Physics, 19, 9903−9911, https://doi.org/10.5194/acp-19-9903-2019.
Hass-Klau, C., 1993: A review of the evidence from Germany and the UK. Transport Policy, 1, 21−31, https://doi.org/10.1016/0967-070X(93)90004-7.
Houghten, F. C., and C. P. Yaglou, 1923: Determining lines of equal comfort. ASHVE Transactions, 29, 163−176.
Huang, Y. Q., D. Y. Lai, Y. Q. Liu, and H. Xuan, 2020: Impact of climate change on outdoor thermal comfort in cities in United States. E3S Web of Conferences, 158, 01002, https://doi.org/10.1051/e3sconf/202015801002.
Huang, Y. Y., H. J. Wang, K. Fan, and Y. Q. Gao, 2015: The western Pacific subtropical high after the 1970s: Westward or eastward shift. Climate Dyn., 44, 2035−2047, https://doi.org/10.1007/s00382-014-2194-5.
Kong, Q. Q., J. Y. Zheng, and X. G. Wang, 2016: Spatial pattern and temporal variation in thermal comfort in China from 1979 to 2014. Resources Science, 38, 1129−1139, https://doi.org/10.18402/resci.2016.06.12. (in Chinese with English abstract
Li, H. X., H. P. Chen, and H. J. Wang, 2017: Effects of anthropogenic activity emerging as intensified extreme precipitation over China. J. Geophys. Res., 122, 6899−6914, https://doi.org/10.1002/2016JD026251.
Lin, L. J., E. J. Ge, C. C. Chen, and M. Luo, 2019: Mild weather changes over China during 1971−2014: Climatology, trends, and interannual variability. Scientific Reports, 9, 2419, https://doi.org/10.1038/s41598-019-38845-8.
Liu, Q., T. J. Zhou, H. T. Mao, and C. B. Fu, 2019: Decadal variations in the relationship between the western pacific subtropical high and summer heat waves in East China. J. Climate, 32, 1627−1640, https://doi.org/10.1175/JCLI-D-18-0093.1.
Mayer, H., and P. Höppe, 1987: Thermal comfort of man in different urban environments. Theor. Appl. Climatol., 38, 43−49, https://doi.org/10.1007/BF00866252.
McMichael, A. J., R. E. Woodruff, and S. Hales, 2006: Climate change and human health: Present and future risks. The Lancet, 367, 859−869, https://doi.org/10.1016/S0140-6736(06)68079-3.
Mekis, É., L. A. Vincent, M. W. Shephard, and X. B. Zhang, 2015: Observed trends in severe weather conditions based on humidex, wind chill, and heavy rainfall events in Canada for 1953−2012. Atmosphere-Ocean, 53, 383−397, https://doi.org/10.1080/07055900.2015.1086970.
Middel, A., N. Selover, B. Hagen, and N. Chhetri, 2016: Impact of shade on outdoor thermal comfort—a seasonal field study in Tempe, Arizona. International Journal of Biometeorology, 60, 1849−1861, https://doi.org/10.1007/s00484-016-1172-5.
Moore, F. C., N. Obradovich, F. Lehner, and P. Baylis, 2019: Rapidly declining remarkability of temperature anomalies may obscure public perception of climate change. Proceedings of the National Academy of Sciences of the United States of America, 116, 4905−4910, https://doi.org/10.1073/pnas.1816541116.
Nikolopoulou, M., and S. Lykoudis, 2006: Thermal comfort in outdoor urban spaces: Analysis across different European countries. Building and Environment, 41, 1455−1470, https://doi.org/10.1016/j.buildenv.2005.05.031.
O’Neill, B. C., E. Kriegler, K. Riahi, K. L. Ebi, S. Hallegatte, T. R. Carter, R. Mathur, and D. P. van Vuuren, 2014: A new scenario framework for climate change research: The concept of shared socioeconomic pathways. Climatic Change, 122, 387−400, https://doi.org/10.1007/s10584-013-0905-2.
Osczevski, R., and M. Bluestein, 2005: The new wind chill Equivalent temperature Chart. Bull. Amer. Meteor. Soc., 86, 1453−1458, https://doi.org/10.1175/BAMS-86-10-1453.
Pantavou, K., G. Theoharatos, A. Mavrakis, and M. Santamouris, 2011: Evaluating thermal comfort conditions and health responses during an extremely hot summer in Athens. Building and Environment, 46, 339−344, https://doi.org/10.1016/j.buildenv.2010.07.026.
Perkins-Kirkpatrick, S. E., and S. C. Lewis, 2020: Increasing trends in regional heatwaves. Nature Communications, 11, 3357, https://doi.org/10.1038/s41467-020-16970-7.
Piselli, C., V. L. Castaldo, I. Pigliautile, A. L. Pisello, and F. Cotana, 2018: Outdoor comfort conditions in urban areas: On citizens’ perspective about microclimate mitigation of urban transit areas. Sustainable Cities and Society, 39, 16−36, https://doi.org/10.1016/j.scs.2018.02.004.
Raymond, C., T. Matthews, and R. M. Horton, 2020: The emergence of heat and humidity too severe for human tolerance. Science Advances, 6, eaaw1838, https://doi.org/10.1126/sciadv.aaw1838.
Ribes, A., S. Planton, and L. Terray, 2013: Application of regularised optimal fingerprinting to attribution. Part I: Method, properties and idealised analysis. Climate Dyn., 41, 2817--2836,
Roshan, G., A. Ghanghermeh, and Q. Q. Kong, 2018: Spatial and temporal analysis of outdoor human thermal comfort during heat and cold waves in Iran. Weather and Climate Extremes, 19, 58−67, https://doi.org/10.1016/j.wace.2018.01.005.
Russo, S., J. Sillmann, S. Sippel, M. J. Barcikowska, C. Ghisetti, M. Smid, and B. O’Neill, 2019: Half a degree and rapid socioeconomic development matter for heatwave risk. Nature Communications, 10, 136, https://doi.org/10.1038/s41467-018-08070-4.
Sarojini, B. B., P. A. Stott, and E. Black, 2016: Detection and attribution of human influence on regional precipitation. Nature Climate Change, 6, 669−675, https://doi.org/10.1038/NCLIMATE2976.
Stathopoulos, T., 2006: Pedestrian level winds and outdoor human comfort. Journal of Wind Engineering and Industrial Aerodynamics, 94, 769−780, https://doi.org/10.1016/j.jweia.2006.06.011.
Stathopoulos, T., H. Q. Wu, and J. Zacharias, 2004: Outdoor human comfort in an urban climate. Building and Environment, 39, 297−305, https://doi.org/10.1016/j.buildenv.2003.09.001.
Steadman, R. G., 1971: Indices of windchill of clothed persons. J. Appl. Meteorol. Climatol., 10, 674−683, https://doi.org/10.1175/1520-0450(1971)010<0674:IOWOCP>2.0.CO;2.
Steadman, R. G., 1979: The assessment of sultriness. Part II: Effects of wind, extra radiation and barometric pressure on apparent temperature. J. Appl. Meteorol., 18, 874−885, https://doi.org/10.1175/1520-0450(1979)018<0874:TAOSPI>2.0.CO;2.
Terjung, W. H., 1968: World patterns of the distribution of the monthly comfort index. International Journal of Biometeorology, 12, 119−151, https://doi.org/10.1007/BF01553502.
Thorsson, S., F. Lindberg, J. Björklund, B. Holmer, and D. Rayner, 2011: Potential changes in outdoor thermal comfort conditions in Gothenburg, Sweden due to climate change: The influence of urban geometry. International Journal of Climatology, 31, 324−335, https://doi.org/10.1002/joc.2231.
Wang, S., H. Tian, W. S. Xie, W. A. Tang, and X. Ding, 2012: A study on variations and comprehensive zoning of climate comfort degree in Anhui Province in the past 50 years. Progress in Geography, 31, 40−45, https://doi.org/10.11820/dlkxjz.2012.01.006. (in Chinese with English abstract
Wang, S. Z., and B. Sun, 2018: The impacts of different land surface parameterization schemes on Northeast China snowfall simulation. Meteorol. Atmos. Phys., 130, 583−590, https://doi.org/10.1007/s00703-017-0539-4.
Wang, W. W., W. Zhou, X. Z. Li, X. Wang, and D. X. Wang, 2016: Synoptic-scale characteristics and atmospheric controls of summer heat waves in China. Climate Dyn., 46, 2923−2941, https://doi.org/10.1007/s00382-015-2741-8.
Wu, F. F., X. H. Yang, and Z. Y. Shen, 2019: Regional and seasonal variations of outdoor thermal comfort in China from 1966 to 2016. Science of the Total Environment, 665, 1003−1016, https://doi.org/10.1016/j.scitotenv.2019.02.190.
Wu, J., and X. J. Gao, 2013: A gridded daily observation dataset over China region and comparison with the other datasets. Chinese Journal of Geophysics, 56, 1102−1111, https://doi.org/10.6038/cjg20130406. (in Chinese with English abstract
Wu, J., X. J. Gao, F. Giorgi, and D. L. Chen, 2017: Changes of effective temperature and cold/hot days in late decades over China based on a high resolution gridded observation dataset. International Journal of Climatology, 37, 788−800, https://doi.org/10.1002/joc.5038.
Xu, Y., X. J. Gao, Y. Shen, C. H. Xu, Y. Shi, and F. Giorgi, 2009: A daily temperature dataset over China and its application in validating a RCM simulation. Adv. Atmos. Sci., 26, 763−772, https://doi.org/10.1007/s00376-009-9029-z.
Yaglou, C. P., and D. Minard, 1957: Control of heat casualties at military training centers. A.M.A. Archives of Industrial Health, 16, 302−316.
Yue, M., S. G. Wang, Z. W. Zhang, P. Ma, H. F. Li, and K. Z. Shang, 2019: Analysis of spatio-temporal changes in human comfort levels from 1961−2014 in China Mainland. Journal of Lanzhou University (Natural Sciences), 55, 455−462, https://doi.org/10.13885/j.issn.0455-2059.2019.04.006. (in Chinese with English abstract
Zeng, Y. L., and L. Dong, 2015: Thermal human biometeorological conditions and subjective thermal sensation in pedestrian streets in Chengdu, China. International Journal of Biometeorology, 59, 99−108, https://doi.org/10.1007/s00484-014-0883-8.
Zhang, X. B., H. Wan, F. W. Zwiers, G. C. Hegerl, and S. K. Min, 2013: Attributing intensification of precipitation extremes to human influence. Geophys. Res. Lett., 40, 5252−5257, https://doi.org/10.1002/grl.51010.
Zhang, Z. W., 2014: Assessment of Healthy Climate Dependent on Human Comfortable Degree in Mainland China. PhD dissertation, Lanzhou University. (in Chinese with English abstract)
Zhou, B. T., Y. Xu, J. Wu, S. Y. Dong, and Y. Shi, 2016: Changes in temperature and precipitation extreme indices over China: Analysis of a high‐resolution grid dataset. International Journal of Climatology, 36, 1051−1066, https://doi.org/10.1002/joc.4400.