Adhikari, A., C. T. Liu, and L. Hayden, 2019: Uncertainties of GPM microwave imager precipitation estimates related to precipitation system size and intensity. J. Hydrometeorol., 20, 1907−1923, https://doi.org/10.1175/JHM-D-19-0038.1.
Black, R. A., and J. Hallett, 1986: Observations of the distribution of ice in hurricanes. J. Atmos. Sci., 43, 802−822, https://doi.org/10.1175/1520-0469(1986)043<0802:OOTDOI>2.0.CO;2.
Black, R. A., and J. Hallett, 1999: Electrification of the hurricane. J. Atmos. Sci., 56, 2004−2028, https://doi.org/10.1175/1520-0469(1999)056<2004:EOTH>2.0.CO;2.
Bormann, N., A. Fouilloux, and W. Bell, 2013: Evaluation and assimilation of ATMS data in the ECMWF system. J. Geophys. Res., 118 , 12 970−12 980, https://doi.org/10.1002/2013JD020325.
Dou, F. L., J. Shang, Q. Wu, and S. Y. Gu, 2020: Retrieval of cloud liquid water content over global oceans using FY-3C/3D microwave imager. J. Remote Sens., 24 (6), 766−775, https://doi.org/10.11834/jrs.20208323. (in Chinese with English abstract
Eresmaa, R., and A. P. McNally, 2014: Diverse profile datasets from the ECMWF 137-level short-range forecasts. NWP SAF Report No. NWPSAF-EC-TR-017, https://doi.org/10.13140/2.1.4476.8963.
Frisch, A. S., G. Feingold, C. W. Fairall, T. Uttal, and J. B. Snider, 1998: On cloud radar and microwave radiometer measurements of stratus cloud liquid water profiles. J. Geophys. Res., 103 (D18), 23 195−23 197, https://doi.org/10.1029/98JD01827.
Frisch, S., M. Shupe, I. Djalalova, G. Feingold, and M. Poellot, 2002: The retrieval of stratus cloud droplet effective radius with cloud radars. J. Atmos. Oceanic Technol., 19, 835−842, https://doi.org/10.1175/1520-0426(2002)019<0835:TROSCD>2.0.CO;2.
Grody, N. C., 1991: Classification of snow cover and precipitation using the special sensor microwave imager. J. Geophys. Res., 96, 7423−7435, https://doi.org/10.1029/91JD00045.
Han, Y., and F. Z. Weng, 2018: Remote sensing of tropical cyclone thermal structure from satellite microwave sounding instruments: Impacts of optimal channel selection on retrievals. Journal of Meteorological Research, 32, 804−818, https://doi.org/10.1007/s13351-018-8005-x.
Hu, H., and Y. Han, 2021: Comparing the thermal structures of tropical cyclones derived from suomi NPP ATMS and FY-3D microwave sounders. IEEE Trans. Geosci. Remote Sens., 59, 8073−8083, https://doi.org/10.1109/TGRS.2020.3034 262.
Hu, Y., and Coauthors, 2007: Global statistics of liquid water content and effective number concentration of water clouds over ocean derived from combined CALIPSO and MODIS measurements. Atmospheric Chemistry and Physics, 7, 3353−3359, https://doi.org/10.5194/acp-7-3353-2007.
Hu, H., F. Z. Weng, Y. Han, and Y. H. Duan, 2019: Remote sensing of tropical cyclone thermal structure from satellite microwave sounding instruments: Impacts of background profiles on retrievals. Journal of Meteorological Research, 33, 89−103, https://doi.org/10.1007/s13351-019-8094-1.
Jiang, B. L., B. Huang, W. S. Lin, and S. S. Xu, 2016: Investigation of the effects of anthropogenic pollution on typhoon precipitation and microphysical processes using WRF-chem. J. Atmos. Sci., 73, 1593−1610, https://doi.org/10.1175/JAS-D-15-0202.1.
Kummerow, C., and L. Giglio, 1994: A passive microwave technique for estimating rainfall and vertical structure information from space. Part I: Algorithm description. J. Appl. Meteorol., 33, 3−18, https://doi.org/10.1175/1520-0450(1994)033<0003:APMTFE>2.0.CO;2.
Levizzani, V., C. Kidd, D. B. Kirschbaum, C. D. Kummerow, K. Nakamura, and F. J. Turk, 2020: Satellite Precipitation Measurement. Springer, 450 pp.
Liu, Q. H., and F. Z. Weng, 2005: One-dimensional variational retrieval algorithm of temperature, water vapor, and cloud water profiles from Advanced Microwave Sounding Unit (AMSU). IEEE Trans. Geosci. Remote Sens., 43, 1087−1095, https://doi.org/10.1109/TGRS.2004.843211.
Michele, D. S., and P. Bauer, 2006: Passive microwave radiometer channel selection based on cloud and precipitation information content. Quart. J. Roy. Meteor. Soc., 132, 1299−1323, https://doi.org/10.1256/qj.05.164.
Pasqualucci, F., 1984: Drop size distribution measurements in convective storms with a vertically pointing 35-GHz Doppler radar. Radio Sci., 19 (1), 177−183, https://doi.org/10.1029/RS019i001p00177.
Rosenfeld, D., A. Khain, B. Lynn, and W. L. Woodley, 2007: Simulation of hurricane response to suppression of warm rain by sub-micron aerosols. Atmospheric Chemistry and Physics, 7, 3411−3424, https://doi.org/10.5194/acp-7-3411-2007.
Rosenfeld, D., W. L. Woodley, A. Khain, W. R. Cotton, G. Carrió, I. Ginis, and J. H. Golden, 2012: Aerosol effects on microstructure and intensity of tropical cyclones. Bull. Amer. Meteor. Soc., 93, 987−1001, https://doi.org/10.1175/BAMS-D-11-00147.1.
Sekelsky, S. M., and R. E. McIntosh, 1996: Cloud observations with a polarimetric 33 GHz and 95 GHz radar. Meteor. Atmos. Phys., 59, 123−140, https://doi.org/10.1007/BF010 32004.
Shannon, C. E., and W. Weaver, 1949: The Mathematical Theory of Communication. University of Illinois Press.
Shupe, M. D., P. Kollias, S. Y. Matrosov, and T. L. Schneider, 2004: Deriving mixed-phase cloud properties from Doppler radar spectra. J. Atmos. Oceanic Technol., 21 (4), 660−670, https://doi.org/10.1175/1520-0426(2004)021<0660:DMCPFD>2.0.CO;2.
Spencer, R. W., 1986: A satellite passive 37-GHz scattering-based method for measuring oceanic rain rates. J. Climate Appl. Meteorol., 25, 754−766, https://doi.org/10.1175/1520-0450(1986)025<0754:ASPGSB>2.0.CO;2.
Spencer, R. W., H. M. Goodman, and R. E. Hood, 1989: Precipitation retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol., 6, 254−273, https://doi.org/10.1175/1520-0426(1989)006<0254:PROLAO>2.0.CO;2.
Wallace, J. M., and P. V. Hobbs, 2006: Atmospheric Science: An Introductory Survey. 2nd ed. Academic Press, 483 pp.
Weng, F. Z., X. W. Yu, Y. H. Duan, J. Yang, and J. J. Wang, 2020: Advanced radiative transfer modeling system (ARMS): A new-generation satellite observation operator developed for numerical weather prediction and remote sensing applications. Adv. Atmos. Sci., 37, 131−136, https://doi.org/10.1007/s00376-019-9170-2.
Wilheit, T. T., A. T. C. Chang, M. S. V. Rao, E. B. Rodgers, and J. S. Theon, 1977: A satellite technique for quantitatively mapping rainfall rates over the ocean. J. Appl. Meteorol., 16, 551−560, https://doi.org/10.1175/1520-0450(1977)016<055 1:ASTFQM>2.0.CO;2.
Wu, T.-C., M. Zupanski, L. D. Grasso, C. D. Kummerow, and S.-A. Boukabara, 2019: All-sky radiance assimilation of ATMS in HWRF: a demonstration study. Mon. Wea. Rev., 147, 85−106, https://doi.org/10.1175/MWR-D-17-0337.1.
Xu, J. T., Z. Q. Ma, H. Hu, and F. Z. Weng, 2023: A cloud-dependent 1DVAR precipitation retrieval algorithm for FengYun-3D microwave soundings: a case study in tropical cyclone mekkhala. IEEE Geoscience and Remote Sensing Letters, 20, 1000605, https://doi.org/10.1109/LGRS.2023.3243934.
Zou, X., F. Weng, B. Zhang, L. Lin, Z. Qin, and V. Tallapragada, 2013: Impacts of assimilation of ATMS data in HWRF on track and intensity forecasts of 2012 four landfall hurricanes. J. Geophys. Res., 118 , 11 558−11 576, https://doi.org/10.1002/2013JD020405.