Anderson, J. L., and S. L. Anderson, 1999: A monte carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Wea. Rev., 127, 2741−2758, https://doi.org/10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2.
Benjamin, S. G., and Coauthors, 2004: An hourly assimilation-forecast cycle: The RUC. Mon. Wea. Rev., 132, 495−518, https://doi.org/10.1175/1520-0493(2004)132<0495:AHACTR>2.0.CO;2.
Bessho, K., and Coauthors, 2016: An introduction to Himawari-8/9−Japan’s new-generation geostationary meteorological satellites. J. Meteor. Soc. Japan, 94, 151−183, https://doi.org/10.2151/jmsj.2016-009.
Brewster, K. A., 2003: Phase-correcting data assimilation and application to storm-scale numerical weather prediction. Part II: Application to a severe storm outbreak. Mon. Wea. Rev., 131, 493−507, https://doi.org/10.1175/1520-0493(2003)131<0493:PCDAAA>2.0.CO;2.
Burgers, G., P. J. van Leeuwen, and G. Evensen, 1998: Analysis scheme in the ensemble Kalman filter. Mon. Wea. Rev., 126, 1719−1724, https://doi.org/10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2.
Cardinali, C., L. Isaksen, and E. Andersson, 2003: Use and impact of automated aircraft data in a global 4DVAR data assimilation system. Mon. Wea. Rev., 131, 1865−1877, https://doi.org/10.1175//2569.1.
Chan, M. Y., J. C. F. Lo, and T. Orton, 2019: The structure of tropical Sumatra squalls. Weather, 74, 176−181, https://doi.org/10.1002/wea.3375.
Chan, M.-Y., J. L. Anderson, and X. C. Chen, 2020a: An efficient bi-gaussian ensemble Kalman filter for satellite infrared radiance data assimilation. Mon. Wea. Rev., 148, 5087−5104, https://doi.org/10.1175/mwr-d-20-0142.1.
Chan, M.-Y., F. Q. Zhang, X. C. Chen, and L. R. Leung, 2020b: Potential impacts of assimilating all-sky satellite infrared radiances on convection-permitting analysis and prediction of tropical convection. Mon. Wea. Rev., 148, 3203−3224, https://doi.org/10.1175/mwr-d-19-0343.1.
Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the penn state-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569−585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.
Chen, X. C., K. Zhao, J. Z. Sun, B. W. Zhou, and W. C. Lee, 2016: Assimilating surface observations in a four-dimensional variational Doppler radar data assimilation system to improve the analysis and forecast of a squall line case. Adv. Atmos. Sci., 33, 1106−1119, https://doi.org/10.1007/s00376-016-5290-0.
Chen, X. C., O. M. Pauluis, L. R. Leung, and F. Q. Zhang, 2018a: Multiscale atmospheric overturning of the Indian summer monsoon as seen through isentropic analysis. J. Atmos. Sci., 75, 3011−3030, https://doi.org/10.1175/JAS-D-18-0068.1.
Chen, X. C., O. M. Pauluis, and F. Q. Zhang, 2018b: Atmospheric overturning across multiple scales of an MJO event during the CINDY/DYNAMO campaign. J. Atmos. Sci., 75, 381−399, https://doi.org/10.1175/JAS-D-17-0060.1.
Chen, X. C., O. M. Pauluis, and F. Q. Zhang, 2018c: Regional simulation of Indian summer monsoon intraseasonal oscillations at gray-zone resolution. Atmospheric Chemistry and Physics, 18, 1003−1022, https://doi.org/10.5194/acp-18-1003-2018.
Chen, X. C., R. G. Nystrom, C. A. Davis, and C. M. Zarzycki, 2020: Dynamical structures of cross-domain forecast error covariance of a simulated tropical cyclone in a convection-permitting coupled atmosphere-ocean model. Mon. Wea. Rev., 149, 41−63, https://doi.org/10.1175/mwr-d-20-0116.1.
Chou, M.-D., and M. J. Suarez, 1999: A solar radiation parameterization for atmospheric studies. Tech. Rep. Series on Global Modeling and Data Assimilation, NASA/TM-1999-104606, Vol. 15, 38 pp.
Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10143−10162, https://doi.org/10.1029/94JC00572.
Fovell, R. G., G. L. Mullendore, and S. H. Kim, 2006: Discrete propagation in numerically simulated nocturnal squall lines. Mon. Wea. Rev., 134, 3735−3752, https://doi.org/10.1175/MWR3268.1.
Gamache, J. F., and R. A. Houze Jr., 1982: Mesoscale air motions associated with a tropical squall line. Mon. Wea. Rev., 110, 118−135, https://doi.org/10.1175/1520-0493(1982)110<0118:MAMAWA>2.0.CO;2.
Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723−757, https://doi.org/10.1256/smsqj.55416.
Geer, A. J., and Coauthors, 2018: All-sky satellite data assimilation at operational weather forecasting centres. Quart. J. Roy. Meteor. Soc., 144, 1191−1217, https://doi.org/10.1002/qj.3202.
He, J., and Coauthors, 2019: Development and evaluation of an ensemble-based data assimilation system for regional reanalysis over the tibetan plateau and surrounding regions. Journal of Advances in Modeling Earth Systems, 11, 2503−2522, https://doi.org/10.1029/2019MS001665.
Held, I. M., and A. Y. Hou, 1980: Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci., 37, 515−533, https://doi.org/10.1175/1520-0469(1980)037<0515:NASCIA>2.0.CO;2.
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999−2049, https://doi.org/10.1002/qj.3803.
Hoffman, R. N., and C. Grassotti, 1996: A technique for assimilating SSM/I observations of marine atmospheric storms: Tests with ECMWF analyses. J. Appl. Meteor. Climatiol., 35, 1177−1188, https://doi.org/10.1175/1520-0450(1996)035<1177:ATFASO>2.0.CO;2.
Honda, T., and Coauthors, 2018: Assimilating all-sky Himawari-8 satellite infrared radiances: A case of Typhoon Soudelor (2015). Mon. Wea. Rev., 146, 213−229, https://doi.org/10.1175/MWR-D-16-0357.1.
Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318−2341, https://doi.org/10.1175/MWR3199.1.
Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 1179−1196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.
Houze, R. A. Jr., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, https://doi.org/10.1029/2004RG000150.
Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.
Ingleby, B., 2017: An assessment of different radiosonde types 2015/2016. ECMWF Tech. Memo. No. 807, 69 pp.
Järvinen, H., and P. Undén, 1997: Observation screening and background quality control in the ECMWF 3D-Var data assimilation system. ECMWF Tech. Memo. No. 236, 33 pp.
Johnson, R. H., and P. E. Ciesielski, 2013: Structure and properties of madden-julian oscillations deduced from DYNAMO sounding arrays. J. Atmos. Sci., 70, 3157−3179, https://doi.org/10.1175/JAS-D-13-065.1.
Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, https://doi.org/10.1029/2008RG000266.
Krishnamurti, T. N., L. Stefanova, and V. Misra, 2013: Tropical Meteorology. Springer.
Kunii, M., M. Otsuka, K. Shimoji, and H. Seko, 2016: Ensemble data assimilation and forecast experiments for the september 2015 heavy rainfall event in kanto and tohoku regions with atmospheric motion vectors from Himawari-8. SOLA, 12, 209−214, https://doi.org/10.2151/sola.2016-042.
Liu, C. T., 2011: Rainfall contributions from precipitation systems with different sizes, convective intensities, and durations over the tropics and subtropics. Journal of Hydrometeorology, 12, 394−412, https://doi.org/10.1175/2010JHM1320.1.
Liu, Z.-Q., and F. Rabier, 2002: The interaction between model resolution, observation resolution and observation density in data assimilation: A one-dimensional study. Quart. J. Roy. Meteor. Soc., 128, 1367−1386, https://doi.org/10.1256/003590002320373337.
Lo, J. C.-F., and T. Orton, 2016: The general features of tropical Sumatra Squalls. Weather, 71, 175−178, https://doi.org/10.1002/wea.2748.
Lorenc, A. C., 1986: Analysis methods for numerical weather prediction. Quart J. Roy. Meteor. Soc., 112, 1177−1194, https://doi.org/10.1256/smsqj.47413.
Lorentzen, R. J., and G. Naevdal, 2011: An iterative ensemble kalman filter. IEEE Transactions on Automatic Control, 56, 1990−1995, https://doi.org/10.1109/TAC.2011.2154430.
Madden, R. A., and P. R. Julian, 1971: Detection of a 40-50 day oscillation in the zonal wind in the tropical pacific. J. Atmos. Sci., 28, 702−708, https://doi.org/10.1175/1520-0469(1971)028<0702:doadoi>2.0.co;2.
Meng, Z. Y., and F. Q. Zhang, 2008: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part III: Comparison with 3DVAR in a real-data case study. Mon. Wea. Rev., 136, 522−540, https://doi.org/10.1175/2007MWR2106.1.
Minamide, M., and F. Q. Zhang, 2017: Adaptive observation error inflation for assimilating all-sky satellite radiance. Mon. Wea. Rev., 145, 1063−1081, https://doi.org/10.1175/MWR-D-16-0257.1.
Minamide, M., and F. Q. Zhang, 2019: An adaptive background error inflation method for assimilating all-sky radiances. Quart. J. Roy. Meteor. Soc., 145, 805−823, https://doi.org/10.1002/qj.3466.
Mohr, K. I., J. S. Famiglietti, and E. J. Zipser, 1999: The contribution to tropical rainfall with respect to convective system type, size, and intensity estimated from the 85-GHz ice-scattering signature. J. Appl. Meteor. Climatol., 38, 596−606, https://doi.org/10.1175/1520-0450(1999)038<0596:TCTTRW>2.0.CO;2.
Moncrieff, M. W., and C. H. Liu, 1999: Convection initiation by density currents: Role of convergence, shear, and dynamical organization. Mon. Wea. Rev., 127, 2455−2464, https://doi.org/10.1175/1520-0493(1999)127<2455:CIBDCR>2.0.CO;2.
Nehrkorn, T., B. K. Woods, R. N. Hoffman, and T. Auligné, 2015: Correcting for position errors in variational data assimilation. Mon. Wea. Rev., 143, 1368−1381, https://doi.org/10.1175/MWR-D-14-00127.1.
Nesbitt, S. W., R. Cifelli, and S. A. Rutledge, 2006: Storm morphology and rainfall characteristics of TRMM precipitation features. Mon. Wea. Rev., 134, 2702−2721, https://doi.org/10.1175/MWR3200.1.
Otkin, J. A., 2010: Clear and cloudy sky infrared brightness temperature assimilation using an ensemble Kalman filter. J. Geophys. Res., 115, D19207, https://doi.org/10.1029/2009JD013759.
Otkin, J. A., 2012: Assimilation of water vapor sensitive infrared brightness temperature observations during a high impact weather event. J. Geophys. Res., 117, D19203, https://doi.org/10.1029/2012JD017568.
Otsuka, M., M. Kunii, H. Seko, K. Shimoji, M. Hayashi, and K. Yamashita, 2015: Assimilation experiments of MTSAT rapid scan atmospheric motion vectors on a heavy rainfall event. J. Meteor. Soc. Japan, 93, 459−475, https://doi.org/10.2151/jmsj.2015-030.
Ou, T. H., D. L. Chen, X. C. Chen, C. G. Lin, K. Yang, H.-W. Lai, and F. Q. Zhang, 2020: Simulation of summer precipitation diurnal cycles over the Tibetan Plateau at the gray-zone grid spacing for cumulus parameterization. Climate Dyn., 54, 3525−3539, https://doi.org/10.1007/s00382-020-05181-x.
Penny, S. G., and T. Miyoshi, 2016: A local particle filter for high-dimensional geophysical systems. Nonlinear Processes in Geophysics, 23, 391−405, https://doi.org/10.5194/npg-23-391-2016.
Poterjoy, J., 2016: A localized particle filter for high-dimensional nonlinear systems. Mon. Wea. Rev., 144, 59−76, https://doi.org/10.1175/MWR-D-15-0163.1.
Roca, R., and T. Fiolleau, 2020: Extreme precipitation in the tropics is closely associated with long-lived convective systems. Communications Earth & Environment, 1, 18, https://doi.org/10.1038/s43247-020-00015-4.
Ruppert, J. H. Jr., and X. C. Chen, 2020: Island rainfall enhancement in the maritime continent. Geophys. Res. Lett., 47, e2019GL086545, https://doi.org/10.1029/2019GL086545.
Ruppert, J. H. Jr., X. C. Chen, and F. Q. Zhang, 2020: Convectively forced diurnal gravity waves in the maritime continent. J. Atmos. Sci., 77, 1119−1136, https://doi.org/10.1175/JAS-D-19-0236.1.
Satoh, M., 1994: Hadley circulations in radiative-convective equilibrium in an axially symmetric atmosphere. J. Atmos. Sci., 51, 1947−1968, https://doi.org/10.1175/1520-0469(1994)051<1947:hcirei>2.0.co;2.
Sawada, Y., K. Okamoto, M. Kunii, and T. Miyoshi, 2019: Assimilating every-10-minute Himawari-8 infrared radiances to improve convective predictability. J. Geophys. Res., 124, 2546−2561, https://doi.org/10.1029/2018JD029643.
Schmit, T. J., M. M. Gunshor, W. P. Menzel, J. J. Gurka, J. Li, and A. S. Bachmeier, 2005: Introducing the next-generation advanced baseline imager on GOES-R. Bull. Amer. Meteor. Soc., 86, 1079−1096, https://doi.org/10.1175/BAMS-86-8-1079.
Skamarock, W. C., and Coauthors, 2008: A description of the advanced research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113, https://doi.org/10.5065/D68S4MVH.
Sondergaard, T., and P. F. J. Lermusiaux, 2013: Data assimilation with gaussian mixture models using the dynamically orthogonal field equations. Part II: Applications. Mon. Wea. Rev., 141, 1761−1785, https://doi.org/10.1175/MWR-D-11-00296.1.
Steward, J. L., 2012: Practical optimization algorithms in the data assimilation of large-scale systems with non-linear and non-smooth observation operators. PhD dissertation, Florida State University.
Stratman, D. R., C. K. Potvin, and L. J. Wicker, 2018: Correcting storm displacement errors in ensembles using the feature alignment technique (FAT). Mon. Wea. Rev., 146, 2124−2145, https://doi.org/10.1175/MWR-D-17-0357.1.
Sun, X. M., and Coauthors, 2020: A subjective and objective evaluation of model forecasts of sumatra squall events. Wea. Forecasting, 35, 489−506, https://doi.org/10.1175/WAF-D-19-0187.1.
Talagrand, O., and P. Courtier, 1987: Variational assimilation of meteorological observations with the adjoint vorticity equation. I: Theory. Quart. J. Roy. Meteor. Soc., 113, 1311−1328, https://doi.org/10.1002/qj.49711347812.
Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 5095−5115, https://doi.org/10.1175/2008MWR2387.1.
van Leeuwen, P. J., 2011: Efficient nonlinear data assimilation for oceanic models of intermediate complexity. Proc. 2011 IEEE Statistical Signal Processing Workshop, Nice, France, IEEE, 345−348, https://doi.org/10.1109/SSP.2011.5967700.
Vukicevic, T., M. Sengupta, A. S. Jones, and T. V. Haar, 2006: Cloud-resolving satellite data assimilation: Information content of IR window observations and uncertainties in estimation. J. Atmos. Sci., 63, 901−919, https://doi.org/10.1175/JAS3639.1.
Vukicevic, T., T. Greenwald, M. Zupanski, D. Zupanski, T. V. Haar, and A. S. Jones, 2004: Mesoscale cloud state estimation from visible and infrared satellite radiances. Mon. Wea. Rev., 132, 3066−3077, https://doi.org/10.1175/MWR2837.1.
Wang, S. G., A. H. Sobel, F. Q. Zhang, Y. Q. Sun, Y. Yue, and L. Zhou, 2015: Regional simulation of the october and november MJO events observed during the CINDY/DYNAMO field campaign at gray zone resolution. J. Climate, 28, 2097−2119, https://doi.org/10.1175/JCLI-D-14-00294.1.
Weickmann, K. M., 1983: Intraseasonal circulation and outgoing longwave radiation modes during Northern Hemisphere winter. Mon. Wea. Rev., 111, 1838−1858, https://doi.org/10.1175/1520-0493(1983)111<1838:ICAOLR>2.0.CO;2.
Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 1917−1932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.
Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 1913−1924, https://doi.org/10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2.
Ying, Y., 2019: A multiscale alignment method for ensemble filtering with displacement errors. Mon. Wea. Rev., 147, 4553−4565, https://doi.org/10.1175/MWR-D-19-0170.1.
Ying, Y., and F. Q. Zhang, 2018: Potentials in improving predictability of multiscale tropical weather systems evaluated through ensemble assimilation of simulated satellite-based observations. J. Atmos. Sci., 75, 1675−1698, https://doi.org/10.1175/JAS-D-17-0245.1.
Ying, Y., F. Q. Zhang, and J. L. Anderson, 2018: On the selection of localization radius in ensemble filtering for multiscale quasigeostrophic dynamics. Mon. Wea. Rev., 146, 543−560, https://doi.org/10.1175/MWR-D-17-0336.1.
Zeng, X. B., and A. Beljaars, 2005: A prognostic scheme of sea surface skin temperature for modeling and data assimilation. Geophys. Res. Lett., 32, L14605, https://doi.org/10.1029/2005GL023030.
Zhang, C. D., 2005: Madden-Julian oscillation. Rev. Geophys., 43, RG2003, https://doi.org/10.1029/2004RG000158.
Zhang, F., C. Snyder, and J. Z. Sun, 2004: Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter. Mon. Wea. Rev., 132, 1238−1253, https://doi.org/10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2.
Zhang, Y. J., F. Q. Zhang, and D. J. Stensrud, 2018: Assimilating all-sky infrared radiances from GOES-16 ABI using an ensemble Kalman filter for convection-allowing severe thunderstorms prediction. Mon. Wea. Rev., 146, 3363−3381, https://doi.org/10.1175/MWR-D-18-0062.1.