Biskaborn, B. K., and Coauthors, 2019: Permafrost is warming at a global scale. Nature Communications, 10, 264, https://doi.org/10.1038/s41467-018-08240-4.
Brown, J., K. M. Hinkel, and F. E. Nelson, 2000: The circumpolar active layer monitoring (CALM) program: Research designs and initial results. Polar Geography, 24, 166−258, https://doi.org/10.1080/10889370009377698.
Chen, B. L., S. Q. Luo, S. H. Lü, Y. Zhang, and D. Ma, 2014: Effects of the soil freeze-thaw process on the regional climate of the Qinghai-Tibet Plateau. Climate Research, 59, 243−257, https://doi.org/10.3354/cr01217.
Cherkauer, K. A., and D. P. Lettenmaier, 1999: Hydrologic effects of frozen soils in the upper Mississippi River basin. J. Geophys. Res., 104, 19 599−19 610, https://doi.org/10.1029/1999JD900337.
Cuo, L., Y. X. Zhang, T. J. Bohn, L. Zhao, J. L. Li, Q. M. Liu, and B. R. Zhou, 2015: Frozen soil degradation and its effects on surface hydrology in the northern Tibetan Plateau. J. Geophys. Res., 120, 8276−8298, https://doi.org/10.1002/2015JD023193.
Dai, Y. J., and Q. C. Zeng, 1997: A land surface model (IAP94) for climate studies part I: Formulation and validation in off-line experiments. Adv. Atmos. Sci., 14, 433−460, https://doi.org/10.1007/s00376-997-0063-4.
Dai, Y. J., and Coauthors, 2003: The common land model. Bull. Amer. Meteor. Soc., 84, 1013−1024, https://doi.org/10.1175/BAMS-84-8-1013.
Dai, Y. J., R. E. Dickinson, and Y. P. Wang, 2004: A two-big-leaf model for canopy temperature, photosynthesis, and stomatal conductance. J. Climate, 17, 2281−2299, https://doi.org/10.1175/1520-0442(2004)017<2281:ATMFCT>2.0.CO;2.
Dai, Y. J., and Coauthors, 2014: The Common Land Model (CoLM) Version 2014: Available at http://globalchange.bnu.edu.cn/research/models.
Delisle, G., 2007: Near-surface permafrost degradation: How severe during the 21st century? Geophys. Res. Lett., 34, L09503, https://doi.org/10.1029/2007GL029323.
Fox, J. D., 1992: Incorporating freeze-thaw calculations into a water balance model. Water Resour. Res., 28, 2229−2244, https://doi.org/10.1029/92WR00983.
Gao, J. Q., Z. H. Xie, A. W. Wang, and Z. D. Luo, 2016: Numerical simulation based on two-directional freeze and thaw algorithm for thermal diffusion model. Applied Mathematics and Mechanics, 37, 1467−1478, https://doi.org/10.1007/s10483-016-2106-8.
Gao, J. Q., and Coauthors, 2019: A new frozen soil parameterization including frost and thaw fronts in the Community Land Model. Journal of Advances in Modeling Earth Systems, 11, 659−679, https://doi.org/10.1029/2018MS001399.
Guo, D. L., and H. J. Wang, 2017a: Simulated historical (1901--2010) changes in the permafrost extent and active layer thickness in the Northern Hemisphere. J. Geophys. Res., 122, 12 285−12 295, https://doi.org/10.1002/2017JD027691.
Guo, D. L., and H. J. Wang, 2017b: Permafrost degradation and associated ground settlement estimation under 2 °C global warming. Climate Dyn., 49, 2569−2583, https://doi.org/10.1007/s00382-016-3469-9.
Guo, D. L., M. X. Yang, and H. J. Wang, 2011a: Sensible and latent heat flux response to diurnal variation in soil surface temperature and moisture under different freeze/thaw soil conditions in the seasonal frozen soil region of the central Tibetan Plateau. Environmental Earth Sciences, 63, 97−107, https://doi.org/10.1007/s12665-010-0672-6.
Guo, D. L., M. X. Yang, and H. J. Wang, 2011b: Characteristics of land surface heat and water exchange under different soil freeze/thaw conditions over the central Tibetan Plateau. Hydrological Processes, 25, 2531−2541, https://doi.org/10.1002/hyp.8025.
Guo, D. L., H. J. Wang, and A. H. Wang, 2017: Sensitivity of historical simulation of the permafrost to different atmospheric forcing data sets from 1979 to 2009. J. Geophys. Res., 122, 12 269−12 284, https://doi.org/10.1002/2017JD027477.
Iwata, Y., M. Hayashi, S. Suzuki, T. Hirota, and S. Hasegawa, 2010: Effects of snow cover on soil freezing, water movement, and snowmelt infiltration: A paired plot experiment. Water Resour. Res., 46, W09504, https://doi.org/10.1029/2009wr008070.
Ji, D. Y., and Coauthors, 2014: Description and basic evaluation of Beijing Normal University earth system model (Bnu-Esm) version 1. Geoscientific Model Development, 7, 2039−2064, https://doi.org/10.5194/gmd-7-2039-2014.
Kim, Y., J. S. Kimball, K. Zhang, and K. C. McDonald, 2012: Satellite detection of increasing Northern Hemisphere non-frozen seasons from 1979 to 2008: Implications for regional vegetation growth. Remote Sensing of Environment, 121, 472−487, https://doi.org/10.1016/j.rse.2012.02.014.
Koven, C., P. Friedlingstein, P. Ciais, D. Khvorostyanov, G. Krinner, and C. Tarnocai, 2009: On the formation of high-latitude soil carbon stocks: Effects of cryoturbation and insulation by organic matter in a land surface model. Geophys. Res. Lett., 36, L21501, https://doi.org/10.1029/2009GL040150.
Lawrence, D., M. A. G. Slater, S. C. Swenson, 2012: Simulation of present-day and future permafrost and seasonally frozen ground conditions in CCSM4. Journal of Climate, 25, 2207−2225, https://doi.org/10.1175/JCLI-D-11-00334.1.
Li, R. C., and Coauthors, 2021: Simulated spatial and temporal distribution of freezing and thawing fronts in CAS-FGOALS-g3. Journal of Advances in Modeling Earth Systems, 13, e2020MS002152, https://doi.org/10.1029/2020MS002152.
Li, X., and T. Koike, 2003: Frozen soil parameterization in SiB2 and its validation with GAME-Tibet observations. Cold Regions Science and Technology, 36, 165−182, https://doi.org/10.1016/S0165-232X(03)00009-0.
Nelson, F. E., N. I. Shiklomanov, K. M. Hinkel, and H. H. Christiansen, 2004: The circumpolar active layer monitoring (CALM) workshop and THE CALM II programs. Polar Geography, 28, 253−266, https://doi.org/10.1080/789610205.
Oleson, K., and Coauthors, 2013: Technical description of version 4.5 of the Community Land Model (CLM). NCAR Tech. Not NCAR/TN-503+STR, 434 pp, https://doi.org/10.5065/D6RR1W7M.
Peng, X. Q., and Coauthors, 2018: Spatiotemporal changes in active layer thickness under contemporary and projected climate in the Northern Hemisphere. J. Climate, 31, 251−266, https://doi.org/10.1175/JCLI-D-16-0721.1.
Qin, D. H., B. T. Zhou, and C. D. Xiao, 2014: Progress in studies of cryospheric changes and their impacts on climate of China. Journal of Meteorological Research, 28, 732−746, https://doi.org/10.1007/s13351-014-4029-z.
Qin, Y., and Coauthors, 2017: Numerical modeling of the active layer thickness and permafrost thermal state across Qinghai-Tibetan Plateau. J. Geophys. Res., 122, 11 604−11 620, https://doi.org/10.1002/2017JD026858.
Rawlins, M. A., K. C. Mcdonald, S. Frolking, R. B. Lammers, M. Fahnestock, J. S. Kimball, and C. J. Vörösmarty, 2005: Remote sensing of snow thaw at the pan-Arctic scale using the SeaWinds scatterometer. J. Hydrol., 312, 294−311, https://doi.org/10.1016/j.jhydrol.2004.12.018.
Schuur, E. A. G., and Coauthors, 2008: Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle. BioScience, 58, 701−714, https://doi.org/10.1641/B580807.
Schuur, E. A. G., and Coauthors, 2015: Climate change and the permafrost carbon feedback. Nature, 520, 171−179, https://doi.org/10.1038/nature14338.
Takata, K., and M. Kimoto, 2000: A numerical study on the impact of soil freezing on the continental-scale seasonal cycle. J. Meteor. Soc. Japan, 78, 199−221, https://doi.org/10.2151/jmsj1965.78.3_199.
Wang, A. W., Z. H. Xie, X. B. Feng, X. J. Tian, and P. H. Qin, 2014: A soil water and heat transfer model including changes in soil frost and thaw fronts. Science China Earth Sciences, 57, 1325−1339, https://doi.org/10.1007/s11430-013-4785-0.
Wang, K., T. Zhang, and X. Zhong, 2015: Changes in the timing and duration of the near-surface soil freeze/thaw status from 1956 to 2006 across China. The Cryosphere, 9, 1321−1331, https://doi.org/10.5194/tc-9-1321-2015.
Wang, L. H., and Coauthors, 2021: Recent progress in the land surface process studies: A case study of CAS-LSM. Plateau Meteorology, 40, 1347−1363, https://doi.org/10.7522/j.issn.1000-0534.2021.zk016. (in Chinese with English abstract
Woo, M. K., M. A. Arain, M. Mollinga, and S. Yi, 2004: A two-directional freeze and thaw algorithm for hydrologic and land surface modelling. Geophys. Res. Lett., 31, L12501, https://doi.org/10.1029/2004GL019475.
Xiao, Y., L. Zhao, Y. J. Dai, R. Li, Q. Q. Pang, and J. M. Yao, 2013: Representing permafrost properties in CoLM for the Qinghai-Xizang (Tibetan) Plateau. Cold Regions Science and Technology, 87, 68−77, https://doi.org/10.1016/j.coldregions.2012.12.004.
Xie, C. W., and W. A. Gough, 2013: A simple thaw-freeze algorithm for a multi-layered soil using the Stefan Equation. Permafrost and Periglacial Processes, 24, 252−260, https://doi.org/10.1002/ppp.1770.
Xie, J. B., and Coauthors, 2021: Coupling of the CAS-LSM land-surface model with the CAS-FGOALS-g3 climate system model. Journal of Advance in Modeling Earth System, 13, e2020MS002171, https://doi.org/10.1029/2020MS002171.
Xie, Z. H., and Coauthors, 2018: A high-resolution land model with groundwater lateral flow, water use, and soil freeze-thaw front dynamics and its applications in an Endorheic Basin. J. Geophys. Res., 123, 7204−7222, https://doi.org/10.1029/2018JD028369.
Xie, Z. H., and Coauthors, 2020: Land surface model CAS-LSM: Model description and evaluation. Journal of Advance in Modeling Earth System, 12, e2020MS002339, https://doi.org/10.1029/2020MS002339.
Yang, M. X., F. E. Nelson, N. I. Shiklomanov, D. L. Guo, and G. N. Wan, 2010: Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research. Earth-Science Reviews, 103, 31−44, https://doi.org/10.1016/j.earscirev.2010.07.002.
Yi, S. H., M. A. Arain, and M.-K. Woo, 2006: Modifications of a land surface scheme for improved simulation of ground freeze-thaw in northern environments. Geophys. Res. Lett., 33, L13501, https://doi.org/10.1029/2006GL026340.
Zhang, H., and Coauthors, 2020: Description and climate simulation performance of CAS-ESM version 2. Journal of Advances in Modeling Earth Systems, 12, e2020MS002210, https://doi.org/10.1029/2020MS002210.
Zhao, L., and Coauthors, 2018: Soil organic carbon and total nitrogen pools in permafrost zones of the Qinghai-Tibetan Plateau. Scientific Reports, 8, 3656, https://doi.org/10.1038/s41598-018-22024-2.