Bouttes, N., and J. M. Gregory, 2014: Attribution of the spatial pattern of CO2-forced sea level change to ocean surface flux changes. Environmental Research Letters, 9(3), 034004, https://doi.org/10.1088/1748-9326/9/3/034004.
Bouttes, N., J. M. Gregory, T. Kuhlbrodt, and R. S. Smith, 2014: The drivers of projected North Atlantic sea level change. Climate Dyn., 43, 1531−1544, https://doi.org/10.1007/s00382-013-1973-8.
Canuto, V. M., A. Howard, Y. Cheng, and M. S. Dubovikov, 2002: Ocean turbulence. Part II: Vertical diffusivities of momentum, heat, salt, mass, and passive scalars. J. Phys. Oceanogr., 32, 240−264, https://doi.org/10.1175/1520-0485(2002)032<0240:otpivd>2.0.co;2.
Church, J. A., and Coauthors, 2013: Sea Level Change. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds., Cambridge University Press, 1137−1216.
Craig, A. P., R. Jacob, B. Kauffman, T. Bettge, J. Larson, E. Ong, C. Ding, and Y. He, 2005: CPL6: The new extensible, high performance parallel coupler for the Community Climate System Model. The International Journal of High Performance Computing Applications, 19(3), 309−327, https://doi.org/10.1177/1094342005056117.
Ferreira, D., J. Marshall, and P. Heimbach, 2005: Estimating eddy stresses by fitting dynamics to observations using a residual-mean ocean circulation model and its adjoint. J. Phys. Oceanogr., 35, 1891−1910, https://doi.org/10.1175/JPO2785.1.
GaoGent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150−155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.
Gregory, J. M., and Coauthors, 2016: The Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP) contribution to CMIP6: Investigation of sea-level and ocean climate change in response to CO2 forcing. Geoscientific Model Development, 9(11), 3993−4017, https://doi.org/10.5194/gmd-9-3993-2016.
Griffies, S. M., and Coauthors, 2016: OMIP contribution to CMIP6: Experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project. Geoscientific Model Development, 9, 3231−3296, https://doi.org/10.5194/gmd-9-3231-2016.
Li, L. J., and Coauthors, 2013: Evaluation of Grid-point Atmospheric Model of IAP LASG version 2 (GAMIL2). Adv. Atmos. Sci., 30(3), 855−867, https://doi.org/10.1007/s00376-013-2157-5.
Li, L. J., and Coauthors, 2020: The flexible global ocean–atmosphere–land system model grid-point version 3 (FGOALS-g3): Description and evaluation. Journal of Advances in Modeling Earth Systems, https://doi.org/10.1029/2019MS002012.
Lin, P. F., and Coauthors, 2016: A coupled experiment with LICOM2 as the ocean component of CESM1. Journal of Meteorological Research, 30(1), 76−92, https://doi.org/10.1007/s13351-015-5045-3.
Lin, P. F., and Coauthors, 2020: LICOM model datasets for the CMIP6 Ocean Model Intercomparison Project. Adv. Atmos. Sci., 37(3), 239−249, https://doi.org/10.1007/s00376-019-9208-5.
Liu, H. L., P. F. Lin, Y. Q. Yu, and X. H. Zhang, 2012: The baseline evaluation of LASG/IAP Climate system Ocean Model (LICOM) version 2. Acta Meteorologica Sinica, 26(3), 318−329, https://doi.org/10.1007/s13351-012-0305-y.
Murray, R. J., 1996: Explicit generation of orthogonal grids for ocean models. J. Comput. Phys., 126, 251−273, https://doi.org/10.1006/jcph.1996.0136.
Ohlmann, J. C., 2003: Ocean radiant heating in climate models. J. Climate, 16, 1337−1351, https://doi.org/10.1175/1520-0442(2003)16<1337:ORHICM>2.0.CO;2.
St. Laurent, L. C., H. L. Simmons, and S. R. Jayne, 2002: Estimating tidally driven mixing in the deep ocean. Geophys. Res. Lett., 29, 21-1−21-4, https://doi.org/10.1029/2002GL015633.
Xie, Z. H., and Coauthors, 2018: A high-resolution land model with groundwater lateral flow, water use, and soil freeze–thaw front dynamics and its applications in an endorheic basin. J. Geophys. Res. Atmos., 123, 7204−7222, https://doi.org/10.1029/2018JD028369.
Yu, Z. P., H. L. Liu, and P. F. Lin, 2017: A numerical study of the influence of tidal mixing on Atlantic Meridional Overturning Circulation (AMOC) Simulation. Chinese Journal of Atmospheric Sciences, 41(5), 1087−1100, https://doi.org/10.3878/j.issn.1006-9895.1702.16263. (in Chinese with English abstract)
Yu, Y. Q., S. L. Tang, H. L. Liu, P. F. Lin, and X. L. Li, 2018: Development and evaluation of the dynamic framework of an ocean general circulation model with arbitrary orthogonal curvilinear coordinate. Chinese Journal of Atmospheric Sciences, 42(4), 877−889, https://doi.org/10.3878/j.issn.1006-9895.1805.17284. (in Chinese with English abstract)