Alewell, C., B. Ringeval, C. Ballabio, D. A. Robinson, P. Panagos, and P. Borrelli, 2020: Global phosphorus shortage will be aggravated by soil erosion. Nature Communications, 11, 4546, https://doi.org/10.1038/s41467-020-18326-7.
Andrews, M. B., and Coauthors, 2020: Historical simulations with HadGEM3-GC3.1 for CMIP6. Journal of Advances in Modeling Earth Systems, 12, e2019MS001995, https://doi.org/10.1029/2019MS001995.
Arora, V. K., and J. F. Scinocca, 2016: Constraining the strength of the terrestrial CO2 fertilization effect in the Canadian Earth system model version 4.2 (CanESM4.2). Geoscientific Model Development, 9, 2357−2376, https://doi.org/10.5194/gmd-9-2357-2016.
Arora, V. K., and Coauthors, 2020: Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models. Biogeosciences, 17, 4173−4222, https://doi.org/10.5194/bg-17-4173-2020.
Brovkin, V., and D. Goll, 2015: Land unlikely to become large carbon source. Nature Geoscience, 8, 893, https://doi.org/10.1038/ngeo2598.
Buendía, C., S. Arens, T. Hickler, S. I. Higgins, P. Porada, and A. Kleidon, 2014: On the potential vegetation feedbacks that enhance phosphorus availability-insights from a process-based model linking geological and ecological timescales. Biogeosciences, 11, 3661−3683, https://doi.org/10.5194/bg-11-3661-2014.
Cao, L., G. Bala, K. Caldeira, R. Nemani, and G. Ban-Weiss, 2010: Importance of carbon dioxide physiological forcing to future climate change. Proceedings of the National Academy of Sciences of the United States of America, 107, 9513−9518, https://doi.org/10.1073/pnas.0913000107.
Cleveland, C. C., and Coauthors, 2013: Patterns of new versus recycled primary production in the terrestrial biosphere. Proceedings of the National Academy of Sciences of the United States of America, 110, 12 733−12 737, https://doi.org/10.1073/pnas.1302768110.
Cortés, J., M. D. Mahecha, M. Reichstein, R. B. Myneni, C. Chen, and A. Brenning, 2021: Where are global vegetation greening and browning trends significant. Geophys. Res. Lett., 48, e2020GL091496, https://doi.org/10.1029/2020GL091496.
Cox, P. M., D. Pearson, B. B. Booth, P. Friedlingstein, C. Huntingford, C. D. Jones, and C. M. Luke, 2013: Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature, 494, 341−344, https://doi.org/10.1038/nature11882.
Danabasoglu, G., and Coauthors, 2020: The community earth system model version 2 (CESM2). Journal of Advances in Modeling Earth Systems, 12, e2019MS001916, https://doi.org/10.1029/2019MS001916.
Du, E. Z., and Coauthors, 2020: Global patterns of terrestrial nitrogen and phosphorus limitation. Nature Geoscience, 13, 221−226, https://doi.org/10.1038/s41561-019-0530-4.
Fernández-Martínez, M., and Coauthors, 2019: Global trends in carbon sinks and their relationships with CO2 and temperature. Nature Climate Change, 9, 73−79, https://doi.org/10.1038/s41558-018-0367-7.
Filippelli, G. M., 2008: The global phosphorus cycle: Past, present, and future. Elements, 4, 89−95, https://doi.org/10.2113/GSELEMENTS.4.2.89.
Finzi, A. C., and Coauthors, 2006: Progressive nitrogen limitation of ecosystem processes under elevated CO2 in a warm-temperate forest. Ecology, 87, 15−25, https://doi.org/10.1890/04-1748.
Fleischer, K., and Coauthors, 2019: Nitrogen deposition maintains a positive effect on terrestrial carbon sequestration in the 21st century despite growing phosphorus limitation at regional scales. Global Biogeochemical Cycles, 33, 810−824, https://doi.org/10.1029/2018GB005952.
Friedlingstein, P., and Coauthors, 2006: Climate–carbon cycle feedback analysis: Results from the C4MIP model intercomparison. J. Climate, 19, 3337−3353, https://doi.org/10.1175/JCLI3800.1.
Friedlingstein, P., M. Meinshausen, V. K. Arora, C. D. Jones, A. Anav, S. K. Liddicoat, and R. Knutti, 2013: Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Climate, 27, 511−526, https://doi.org/10.1175/JCLI-D-12-00579.1.
Friedlingstein, P., and Coauthors, 2020: Global carbon budget 2020. Earth System Science Data, 12, 3269−3340, https://doi.org/10.5194/essd-12-3269-2020.
Goll, D. S., and Coauthors, 2017: A representation of the phosphorus cycle for ORCHIDEE (revision 4520). Geoscientific Model Development, 10, 3745−3770, https://doi.org/10.5194/gmd-10-3745-2017.
Hourdin, F., and Coauthors, 2020: LMDZ6A: The atmospheric component of the IPSL climate model with improved and better tuned physics. Journal of Advances in Modeling Earth Systems, 12, e2019MS001892, https://doi.org/10.1029/2019MS001892.
Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteorol. Soc., 94, 1339−1360.
Kowalczyk, P., C. Balzer, G. Reichenauer, A. P. Terzyk, P. A. Gauden, and A. V. Neimark, 2016: Using in-situ adsorption dilatometry for assessment of micropore size distribution in monolithic carbons. Carbon, 103, 263−272, https://doi.org/10.1016/j.carbon.2016.02.080.
Lamarque, J. F., and Coauthors, 2010: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmospheric Chemistry and Physics, 10, 7017−7039, https://doi.org/10.5194/acp-10-7017-2010.
Lamarque, J. F., and Coauthors, 2013: Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Evaluation of historical and projected future changes. Atmospheric Chemistry and Physics, 13, 7997−8018, https://doi.org/10.5194/acp-13-7997-2013.
Loveland, T., B. Reed, J. Brown, D. Ohlen, Z. Zhu, L. Yang, and J. Merchant, 2000: Development of a global land characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens., 21, 1303−1330, https://doi.org/10.1080/014311600210191.
Maier, C. A., K. H. Johnsen, P. H. Anderson, S. Palmroth, D. Kim, H. R. McCarthy, and R. Oren, 2022: The response of coarse root biomass to long-term CO2 enrichment and nitrogen application in a maturing Pinus taeda stand with a large broadleaved component. Global Change Biology, 28, 1458−1476, https://doi.org/10.1111/gcb.15999.
Mori, T., S. Ohta, S. Ishizuka, R. Konda, A. Wicaksono, J. Heriyanto, and A. Hardjono, 2010: Effects of phosphorus addition on N2O and NO emissions from soils of an Acacia mangium plantation. Soil Science & Plant Nutrition, 56, 782−788, https://doi.org/10.1111/j.1747-0765.2010.00501.x.
Norby, R. J., J. M. Warren, C. M. Iversen, B. E. Medlyn, and R. E. McMurtrie, 2010: CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proceedings of the National Academy of Sciences of the United States of America, 107, 19 368−19 373, https://doi.org/10.1073/pnas.1006463107.
Olson, D. M., et al., 2001: Terrestrial Ecoregions of the World: A New Map of Life on Earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience, 51(11), 933−938, https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2.
Peng, J., Y. P. Wang, B. Z. Houlton, L. Dan, B. Pak, and X. B. Tang, 2020: Global carbon sequestration is highly sensitive to model-based formulations of nitrogen fixation. Global Biogeochemical Cycles, 34, e2019GB006296, https://doi.org/10.1029/2019GB006296.
Peng, J., L. Dan, F. Q. Yang, X. B. Tang, and D. Y. Wang, 2021: Global and regional estimation of carbon uptake using CMIP6 ESM compared with TRENDY ensembles at the centennial scale. J. Geophys. Res., 126, e2021JD035135, https://doi.org/10.1029/2021JD035135.
Peng, J., Y. L. Wang, L. Dan, J. M. Feng, F. Q. Yang, X. B. Tang, Q. Z. Wu, and J. Tian, 2022: Overestimated terrestrial carbon uptake in the future owing to the lack of spatial variations CO2 in an earth system model. Earth's Future, 10, e2021EF002440, https://doi.org/10.1029/2021EF002440.
Piao, S. L., and Coauthors, 2013: Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Global Change Biology, 19, 2117−2132, https://doi.org/10.1111/gcb.12187.
Qian, T. T., A. G. Dai, K. E. Trenberth, and K. W. Oleson, 2006: Simulation of global land surface conditions from 1948 to 2004. Part I: Forcing data and evaluations. Journal of Hydrometeorology, 7, 953−975, https://doi.org/10.1175/JHM540.1.
Riahi, K., and Coauthors, 2011: RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Climate Change, 109, 33−57, https://doi.org/10.1007/s10584-011-0149-y.
Schillereff, D. N., R. C. Chiverrell, J. K. Sjöström, M. E. Kylander, J. F. Boyle, J. A. C. Davies, H. Toberman, and E. Tipping, 2021: Phosphorus supply affects long-term carbon accumulation in mid-latitude ombrotrophic peatlands. Communications Earth & Environment, 2, 241, https://doi.org/10.1038/s43247-021-00316-2.
Séférian, R., and Coauthors, 2016: Development and evaluation of CNRM Earth system model – CNRM-ESM1. Geoscientific Model Development, 9, 1423−1453, https://doi.org/10.5194/gmd-9-1423-2016,2016.
Sellar, A. A., and Coauthors, 2019: UKESM1: Description and evaluation of the U.K. Earth System Model. Journal of Advances in Modeling Earth Systems, 11, 4513−4558, https://doi.org/10.1029/2019MS001739.
Seneviratne, S. I., and M. Hauser, 2020: Regional climate sensitivity of climate extremes in CMIP6 versus CMIP5 multimodel ensembles. Earth's Future, 8, e2019EF001474, https://doi.org/10.1029/2019EF001474.
Shi, Z., S. Crowell, Y. Q. Luo, and B. Moore III, 2018: Model structures amplify uncertainty in predicted soil carbon responses to climate change. Nature Communications, 9, 2171, https://doi.org/10.1038/s41467-018-04526-9.
Sponseller, R. A., M. J. Gundale, M. Futter, E. Ring, A. Nordin, T. Näsholm, and H. Laudon, 2016: Nitrogen dynamics in managed boreal forests: Recent advances and future research directions. Ambio, 45, 175−187, https://doi.org/10.1007/s13280-015-0755-4.
Vitousek, P. M., S. Porder, B. Z. Houlton, and O. A. Chadwick, 2010: Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications, 20, 5−15, https://doi.org/10.1890/08-0127.1.
Wang, Y. P., B. Z. Houlton, and C. B. Field, 2007: A model of biogeochemical cycles of carbon, nitrogen, and phosphorus including symbiotic nitrogen fixation and phosphatase production. Global Biogeochemical Cycles, 21, GB1018, https://doi.org/10.1029/2006GB002797.
Wang, Y. P., R. M. Law, and B. Pak, 2010: A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere. Biogeosciences, 7, 2261−2282, https://doi.org/10.5194/bg-7-2261-2010.
Wang, Y. P., X. J. Lu, I. J. Wright, Y. J. Dai, P. J. Rayner, and P. B. Reich, 2012: Correlations among leaf traits provide a significant constraint on the estimate of global gross primary production. Geophys. Res. Lett., 39, L19405, https://doi.org/10.1029/2012GL053461.
Wang, Z. N., and Coauthors, 2020: Coupling of phosphorus processes with carbon and nitrogen cycles in the dynamic land ecosystem model: Model structure, parameterization, and evaluation in tropical forests. Journal of Advances in Modeling Earth Systems, 12, e2020MS002123, https://doi.org/10.1029/2020MS002123.
Wieder, W. R., C. C. Cleveland, W. K. Smith, and K. Todd-Brown, 2015: Future productivity and carbon storage limited by terrestrial nutrient availability. Nature Geoscience, 8, 441−444, https://doi.org/10.1038/ngeo2413.
Wu, T. W., and Coauthors, 2019: The Beijing climate center climate system model (BCC-CSM): The main progress from CMIP5 to CMIP6. Geoscientific Model Development, 12, 1573−1600, https://doi.org/10.5194/gmd-12-1573-2019.
Zhang, Q., A. J. Pitman, Y. P. Wang, Y. J. Dai, and P. J. Lawrence, 2013: The impact of nitrogen and phosphorous limitation on the estimated terrestrial carbon balance and warming of land use change over the last 156 yr. Earth System Dynamics, 4, 333−345, https://doi.org/10.5194/esd-4-333-2013.
Zhang, Q., Y. P. Wang, R. J. Matear, A. J. Pitman, and Y. J. Dai, 2014: Nitrogen and phosphorous limitations significantly reduce future allowable CO2 emissions. Geophys. Res. Lett., 41, 632−637, https://doi.org/10.1002/2013GL058352.
Zhang, X. Z., P. J. Rayner, Y. P. Wang, J. D. Silver, X. J. Lu, B. Pak, and X. G. Zheng, 2016: Linear and nonlinear effects of dominant drivers on the trends in global and regional land carbon uptake: 1959 to 2013. Geophys. Res. Lett., 43, 1607−1614, https://doi.org/10.1002/2015GL067162.
Zhang, X. Z., and Coauthors, 2021: A small climate-amplifying effect of climate-carbon cycle feedback. Nature Communications, 12, 2952, https://doi.org/10.1038/s41467-021-22392-w.
Ziehn, T., and Coauthors, 2020: The australian earth system model: ACCESS-ESM1.5. Journal of Southern Hemisphere Earth Systems Science, 70, 193−214, https://doi.org/10.1071/ES19035.