Andreas, E. L., W. B. Tucker III, and S. F. Ackley, 1984: Atmospheric boundary-layer modification, drag coefficient, and surface heat flux in the Antarctic marginal ice zone. J. Geophys. Res., 89(C1), 649−661, https://doi.org/10.1029/JC089iC01p00649.
Ardhuin, F., F. Collard, B. Chapron, F. Girard-Ardhuin, G. Guitton, A. Mouche, and J. E. Stopa, 2015: Estimates of ocean wave heights and attenuation in sea ice using the SAR wave mode on Sentinel-1A. Geophys. Res. Lett., 42(7), 2317−2325, https://doi.org/10.1002/2014GL062940.
Cheng, S. K., and Coauthors, 2017: Calibrating a viscoelastic sea ice model for wave propagation in the Arctic fall marginal ice zone. J. Geophys. Res., 122(11), 8770−8793, https://doi.org/10.1002/2017JC013275.
Collins III, C. O., and W. E. Rogers, 2017: A source term for wave attenuation by sea ice in WAVEWATCH III®: IC4. NRL Memo. Rep. NRL/MR/7320−17-9726, 25 pp.
Collins III, C. O., W. E. Rogers, A. Marchenko, and A. V. Babanin, 2015: In situ measurements of an energetic wave event in the Arctic marginal ice zone. Geophys. Res. Lett., 42, 1863−1870, https://doi.org/10.1002/2015GL063063.
Cooper, V. T., L. A. Roach, J. Thomson, S. D. Brenner, M. M. Smith, M. H. Meylan, and C. M. Bitz, 2022: Wind waves in sea ice of the western Arctic and a global coupled wave-ice model. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 380, 20210258, https://doi.org/10.1098/rsta.2021.0258.
Hristov, T. S., Miller, S. D., & Friehe, C. A, 2003: Dynamical coupling of wind and ocean waves through wave-induced air flow. Nature, 422(6927), 55−58, https://doi.org/10.1038/nature01382Johnson,.
Johnson M. A., A. V. Marchenko, D. O. Dammann, and A. R. Mahoney, 2021: Observing wind-forced flexural-gravity waves in the Beaufort Sea and their relationship to sea ice mechanics. Journal of Marine Science and Engineering, 9(5), 471, https://doi.org/10.3390/jmse9050471.
Kodaira, T., T. Waseda, T. Nose, K. Sato, J. Inoue, J. Voermans, and A. Babanin, 2021: Observation of on-ice wind waves under grease ice in the western Arctic Ocean. Polar Science, 27, 100567, https://doi.org/10.1016/j.polar.2020.100567.
Kohout, A. L., M. J. M. Williams, S. M. Dean, and M. H. Meylan, 2014: Storm-induced sea-ice breakup and the implications for ice extent. Nature, 509(7502), 604−607, https://doi.org/10.1038/nature13262.
Kohout, A. L., M. Smith, L. A. Roach, G. Williams, F. Montiel, and M. J. M. Williams, 2020: Observations of exponential wave attenuation in Antarctic sea ice during the PIPERS campaign. Annals of Glaciology, 61, 196−209, https://doi.org/10.1017/aog.2020.36.
Komen, G. J., L. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselmann, and P. A. E. M. Janssen, 1994: Dynamics and Modelling of Ocean Waves. Cambridge University Press, 532 pp.
Li, X. W., Q. H. Yang, L. J. Yu, P. R. Holland, C. Min, L. J. Mu, and D. K. Chen, 2022: Unprecedented Arctic sea ice thickness loss and multiyear-ice volume export through Fram Strait during 2010−2011. Environmental Research Letters, 17(9), 095008, https://doi.org/10.1088/1748-9326/ac8be7.
Liu, A. K., and E. Mollo-Christensen, 1988: Wave propagation in a solid ice pack. J. Phys. Oceanogr., 18, 1702−1712, https://doi.org/10.1175/1520-0485(1988)018<1702:WPIASI>2.0.CO;2.
Liu, A. K., B. Holt, and P. W. Vachon, 1991: Wave propagation in the marginal ice zone: Model predictions and comparisons with buoy and synthetic aperture radar data. J. Geophys. Res., 96(C3), 4605−4621, https://doi.org/10.1029/90JC02267.
Liu, D., A. Tsarau, C. L. Guan, and H. H. Shen, 2020: Comparison of ice and wind-wave modules in WAVEWATCH Ⅲ® in the Barents sea. Cold Regions Science and Technology, 172, 103008, https://doi.org/10.1016/j.coldregions.2020.103008.
Masson, D., and P. H. LeBlond, 1989: Spectral evolution of wind-generated surface gravity waves in a dispersed ice field. J. Fluid Mech., 202, 43−81, https://doi.org/10.1017/S0022112089001096.
Meylan, M. H., L. G. Bennetts, and A. L. Kohout, 2014: In situ measurements and analysis of ocean waves in the Antarctic marginal ice zone. Geophys. Res. Lett., 41(14), 5046−5051, https://doi.org/10.1002/2014GL060809.
Mu, L. J., M. Losch, Q. H. Yang, R. Ricker, S. N. Losa, and L. Nerger, 2018: Arctic-wide sea ice thickness estimates from combining satellite remote sensing data and a dynamic ice-ocean model with data assimilation during the CryoSat-2 period. J. Geophys. Res., 123(11), 7763−7780, https://doi.org/10.1029/2018JC014316.
Rogers, W. E., and S. Zieger, 2014: New wave-ice interaction physics in wavewatch III. Proceedings of the 22nd IAHR International Symposium on Ice (Singapore, 2014). [Available online from https://www.iahr.org/library/infor?pid=18383]
Rogers, W. E., J. Thomson, H. H. Shen, M. J. Doble, P. Wadhams, and S. K. Cheng, 2016: Dissipation of wind waves by pancake and frazil ice in the autumn Beaufort Sea. J. Geophys. Res., 121(11), 7991−8007, https://doi.org/10.1002/2016JC012251.
Strong, C., and I. G. Rigor, 2013: Arctic marginal ice zone trending wider in summer and narrower in winter. Geophys. Res. Lett., 40(18), 4864−4868, https://doi.org/10.1002/grl.50928.
The WAMDI Group., 1988: The WAM model—A third generation ocean wave prediction model. J. Phys. Oceanogr., 18(12), 1775−1810, https://doi.org/10.1175/1520-0485(1988)018<1775:TWMTGO>2.0.CO;2.
The WAVEWATCH III® Development Group, 2016: User manual and system documentation of WAVEWATCH III® version 5.16. NOAA Tech. Note MMAB Contrib. No. 329, 361pp.
Tolman, H. L., 1991: A third-generation model for wind waves on slowly varying, unsteady, and inhomogeneous depths and currents. J. Phys. Oceanogr, 21, 782−797, https://doi.org/10.1175/1520-0485(1991)021<0782:ATGMFW>2.0.CO;2.
Tolman, H. L., 2003: Treatment of unresolved islands and ice in wind wave models. Ocean Modelling, 5(3), 219−231, https://doi.org/10.1016/S1463-5003(02)00040-9.
Tolman, H. L., B. Balasubramaniyan, L. D. Burroughs, D. V. Chalikov, Y. Y. Chao, H. S. Chen, and V. M. Gerald, 2002: Development and implementation of wind-generated ocean surface wave modelsat NCEP. Wea. Forecasting, 17(2), 311−333, https://doi.org/10.1175/1520-0434(2002)017<0311:DAIOWG>2.0.CO;2.
Tsarau, A., A. Shestov, and S. Løset, 2017: Wave attenuation in the Barents sea marginal ice zone in the spring of 2016. Proc. the 24th Int. Conf. on Port and Ocean Engineering under Arctic Conditions, Busan, Korea, POAC.
Wadhams, P., V. A. Squire, D. J. Goodman, A. M. Cowan, and S. C. Moore, 1988: The attenuation rates of ocean waves in the marginal ice zone. J. Geophys. Res., 93(C6), 6799−6818, https://doi.org/10.1029/JC093iC06p06799.
Wang, R. X., and H. H. Shen, 2010: Gravity waves propagating into an ice-covered ocean: A viscoelastic model. J. Geophys. Res., 115(C6), C06024, https://doi.org/10.1029/2009JC005591.
Williams, T. D., L. G. Bennetts, V. A. Squire, et al., 2013: Wave–ice interactions in the marginal ice zone. Part 1: Theoretical foundations. Ocean Modelling, 71, 81−91, https://doi.org/10.1016/j.ocemod.2013.05.010.
Zhao, X., and C. P. Zhang, 2021: A theoretical model of wind-wave growth over an ice-covered sea. Bound.-Layer Meteorol., 178(1), 1−19, https://doi.org/10.1007/s10546-020-00552-7.
Zippel, S., and J. Thomson, 2016: Air-sea interactions in the marginal ice zone. Elementa: Science of the Anthropocene, 4, 000095, https://doi.org/10.12952/journal.elementa.000095.