Bellon, G., and A. H. Sobel, 2010: Multiple equilibria of the Hadley circulation in an intermediate-complexity axisymmetric mode. J. Climate, 23(7), 1760−1778, https://doi.org/10.1175/2009JCLI3105.1.
Cao, C., J.-Y. Peng, and J.-H. Yu, 2006: An analysis on the characteristics of landfalling typhoons in China under global climate warming. Journal of Nanjing Institute of Meteorology, 29(4), 455−461, https://doi.org/10.3969/j.issn.1674-7097.2006.04.004. (in Chinese with English abstract
Chan, J. C.-L., 1984: An observational study of the physical processes responsible for tropical cyclone motion. J. Atmos. Sci., 41, 1036−1048, https://doi.org/10.1175/1520-0469(1984)041<1036:AOSOTP>2.0.CO;2.
Chan, J. C. L., and W. M. Gray, 1982: Tropical cyclone movement and surrounding flow relationships. Mon. Wea. Rev., 110, 1354−1374, https://doi.org/10.1175/1520-0493(1982)110<1354:TCMASF>2.0.CO;2.
Chen, G. H., and R. H. Huang, 2008: Influence of monsoon over the warm pool on interannual variation on tropical cyclone activity over the western north pacific. Adv. Atmos. Sci., 25(2), 319−328, https://doi.org/10.1007/s00376-008-0319-7.
Daloz, A. S., and S. J. Camargo, 2018: Is the poleward migration of tropical cyclone maximum intensity associated with a poleward migration of tropical cyclone genesis. Climate Dyn., 50, 705−715, https://doi.org/10.1007/s00382-017-3636-7.
Dee, D. P., and Coauthors, 2011: The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553−597, https://doi.org/10.1002/qj.828.
Emanuel, K. A., 1999: The power of a hurricane: An example of reckless driving on the information superhighway. Weather, 54, 107−108, https://doi.org/10.1002/j.1477-8696.1999.tb06435.x.
Fisher, E. L., 1958: Hurricanes and the sea-surface temperature field. J. Atmos. Sci., 15, 328−333, https://doi.org/10.1175/1520-0469(1958)015<0328:HATSST>2.0.CO;2.
Gao, S., L. F. Zhu, W. Zhang, and X. Y. Shen, 2020: Impact of the Pacific Meridional Mode on landfalling tropical cyclone frequency in China. Quart. J. Roy. Meteor. Soc., 146, 2410−2420, https://doi.org/10.1002/qj.3799.
Gao, S., Z. F. Chen, W. Zhang, and X. Y. Shen, 2021: Effects of tropical North Atlantic sea surface temperature on intense tropical cyclones landfalling in China. International Journal of Climatology, 41, 1056−1065, https://doi.org/10.1002/joc.6732.
Gu, C. L., 2019: Variation characteristics of tropical cyclones making landfall over China under global warming and the mechanism of ENSO. PhD dissertation, Shanghai Normal University,
He, H. Z., J. Yang, D. Y. Gong, R. Mao, Y. Q. Wang, and M. N. Gao, 2015: Decadal changes in tropical cyclone activity over the western North Pacific in the late 1990s. Climate Dyn., 45, 3317−3329, https://doi.org/10.1007/s00382-015-2541-1.
He, X.-Z., and D.-Y. Gong, 2002: Interdecadal change in Western Pacific Subtropical High and climatic effects. Journal of Geographical Sciences, 12, 202−209, https://doi.org/10.1007/BF02837475.
Hu, C. D., C. Y. Zhang, S. Yang, D. K. Chen, and S, P. He, 2018: Perspective on the northwestward shift of autumn tropical cyclogenesis locations over the western North Pacific from shifting ENSO. Climate Dyn., 51, 2455−2465, https://doi.org/10.1007/s00382-017-4022-1.
Huang, R. H., J. L. Huangfu, L. Wu, T. Feng, and G. H. Chen, 2018: Research on the interannual and interdecadal variabilities of the monsoon trough and their impacts on Tropical Cyclone genesis over the Western North Pacific Ocean. Journal of Tropical Meteorology, 24(4), 395−420, https://doi.org/10.16555/j.1006-8775.2018.04.001. (in Chinese with English abstract
Huangfu, J. L., R. H. Huang, and W. Chen, 2015: Influence of tropical western Pacific warm pool thermal state on the interdecadal change of the onset of the South China Sea summer monsoon in the late-1990s. Atmos. Ocean. Sci. Lett., 8(2), 95−99, https://doi.org/10.1080/16742834.2015.11447244.
Kossin, J. P., K. A. Emanuel, and G. A. Vecchi, 2014: The poleward migration of the location of tropical cyclone maximum intensity. Nature, 509(7500), 349−352, https://doi.org/10.1038/nature13278.
Kossin, J. P., K. A. Emanuel, and S. J. Camargo, 2016: Past and projected changes in western North Pacific tropical cyclone exposure. J. Climate, 29(16), 5725−5739, https://doi.org/10.1175/JCLI-D-16-0076.1.
Li, D., H. Zhang, and S. Chen, 2020: On the variation of genesis locations and paths of tropical cyclones in western North Pacific under the background of global warming. Guangdong Meteorology, 42(4), 14−17, 22, https://doi.org/10.3969/j.issn.1007-6190.2020.04.004.
Liu, K. S., and J. C. L. Chan, 2008: Interdecadal variability of western north pacific tropical cyclone tracks. J. Climate, 21(17), 4464−4476, https://doi.org/10.1175/2008JCLI2207.1.
Liu, L., Y. Q. Wang, R. F. Zhan, J. Xu, and Y. H. Duan, 2020: Increasing destructive potential of landfalling tropical cyclones over China. J. Climate, 33(9), 3731−3743, https://doi.org/10.1175/JCLI-D-19-0451.1.
Peng, S. Q., and Coauthors, 2015: A real-time regional forecasting system established for the South China Sea and its performance in the track forecasts of tropical cyclones during 2011−13. Wea. Forecasting, 30, 471−485, https://doi.org/10.1175/WAF-D-14-00070.1.
Qin, X. H., and M. Mu, 2012: Influence of conditional nonlinear optimal perturbations sensitivity on typhoon track forecasts. Quart. J. Roy. Meteor. Soc., 138(662), 185−197, https://doi.org/10.1002/qj.902.
Rüttgers, M., S. Lee, S. Jeon, and D. You, 2019: Prediction of a typhoon track using a generative adversarial network and satellite images. Scientific Reports, 9(1), 6057, https://doi.org/10.1038/s41598-019-42339-y.
Shan, L., D. Zhu, R. Song, and Z. Lei, 2017: Analysis of trend in typhoon tracks over Western North Pacific. Modern Agricultural Science and Technology, 19, 228−230. (in Chinese with English abstract
Sharmila, S., and K. J. E. Walsh, 2018: Recent poleward shift of tropical cyclone formation linked to Hadley cell expansion. Nature Climate Change, 8, 730−736, https://doi.org/10.1038/s41558-018-0227-5.
Shen, Y. X., Y. Sun, Z. Zhong, K. F. Liu, and J. Shi, 2018: Sensitivity experiments on the poleward shift of tropical cyclones over the Western North Pacific under warming ocean conditions. Journal of Meteorological Research, 32(4), 560−570, https://doi.org/10.1007/s13351-018-8047-0.
Sriver, R., and M. Huber, 2006: Low frequency variability in globally integrated tropical cyclone power dissipation. Geophys. Res. Lett., 33, L11705, https://doi.org/10.1029/2006GL026167.
Sun, J., D. Q. Wang, X. M. Hu, Z. Ling, and L. Wang, 2019: Ongoing poleward migration of tropical cyclone occurrence over the western North Pacific Ocean. Geophys. Res. Lett., 46, 9110−9117, https://doi.org/10.1029/2019GL084260.
Tu, J.-Y., J.-M. Chen, L. Wu, and C.-Z. Chi, 2020: Inter-decadal and inter-annual variability of meridional tropical cyclone activity during September–October in the northwestern North Pacific after 1998. International Journal of Climatology, 40, 1686−1702, https://doi.org/10.1002/joc.6295.
Wang, B., R. L. Elsberry, Y. Q. Wang, and L. G. Wu, 1998: Dynamics in tropical cyclone motion: A review. Scientia Atmospherica Sinica, 22(4), 535−547, https://doi.org/10.3878/j.issn.1006-9895.1998.04.15. (in Chinese with English abstract
Wang, L., and G. H. Chen, 2018: Impact of the spring SST gradient between the tropical Indian Ocean and western Pacific on landfalling tropical cyclone frequency in China. Adv. Atmos. Sci., 35, 682−688, https://doi.org/10.1007/s00376-017-7078-2.
Wang, L., G. H. Chen, and R. H. Huang, 2009: Quantitative analysis on large scale circulation system modulating landfalling tropical cyclone activities in the diverse Chinese regions. Chinese Journal of Atmospheric Sciences, 33(5), 916−922, https://doi.org/10.3878/j.issn.1006-9895.2009.05.03. (in Chinese with English abstract
Wang, R. F., L. G. Wu, and C. Wang, 2011: Typhoon track changes associated with global warming. J. Climate, 24(14), 3748−3752, https://doi.org/10.1175/JCLI-D-11-00074.1.
IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Wu, L., and Coauthors, 2014: Simulations of the present and late-twenty-first-century western North Pacific tropical cyclone activity using a regional model. J. Climate, 27, 3405−3424, https://doi.org/10.1175/JCLI-D-12-00830.1.
Wu, L. G., and B. Wang, 2004: Assessing impacts of global warming on tropical cyclone tracks. J. Climate, 17, 1686−1698, https://doi.org/10.1175/1520-0442(2004)017<1686:AIOGWO>2.0.CO;2.
Wu, L. G., and X. Y. Chen, 2016: Revisiting the steering principal of tropical cyclone motion in a numerical experiment. Atmospheric Chemistry and Physics, 16, 14 925−14 936, https://doi.org/10.5194/acp-16-14925-2016.
Wu, L. G., B. Wang, and S. Q. Geng, 2005: Growing typhoon influence on East Asia. Geophys. Res. Lett., 32(18), L18703, https://doi.org/10.1029/2005GL022937.
Wu, L. G., B. Wang, and S.A. Braun, 2008: Implications of tropical cyclone power dissipation index. Int. J. Climatol., 28, 727−731, https://doi.org/10.1002/joc.1573.
Wu, L. G., C. Wang, and B Wang, 2015: Westward shift of western North Pacific tropical cyclogenesis. Geophys. Res. Lett., 42, 1537−1542, https://doi.org/10.1002/2015GL063450.
Wu, L., Z. P. Wen, and R. H. Huang, 2011: A primary study of the correlation between the net air-sea heat flux and the interannual variation of western North Pacific tropical cyclone track and intensity. Acta Oceanologica Sinica, 30, 27−35, https://doi.org/10.1007/s13131-011-0158-8.
Wu, L., Z. P. Wen, R, H. Huang, and R. G. Wu, 2012: Possible linkage between the monsoon trough variability and the tropical cyclone activity over the western North Pacific. Mon. Wea. Rev., 140, 140−150, https://doi.org/10.1175/MWR-D-11-00078.1.
Wu, M. C., K. H. Yeung, and W. L. Chang, 2006: Trends in western North Pacific tropical cyclone intensity. Eos, Transactions American Geophysical Union, 87, 537−538, https://doi.org/10.1029/2006EO480001.
Wu, Y. S., S. M. Chen, W. B. Li, R. Fang, and H. Y. Liu, 2020: Relative vorticity is the major environmental factor controlling tropical cyclone intensification over the western North Pacific. Atmospheric Research, 237, 104874, https://doi.org/10.1016/j.atmosres.2020.104874.
Xu, X. D., and Coauthors, 2013: Does warmer China land attract more super typhoons. Scientific Reports, 3(1), 1522, https://doi.org/10.1038/srep01522.
Yang, Y. H., M. Ying, and B. D. Chen, 2009: The climatic changes of landfall tropical cyclones in China over the past 58 years. Acta Meteorologica Sinica, 67(5), 689−696, https://doi.org/10.3321/j.issn:0577-6619.2009.05.002. (in Chinese with English abstract
Ye, T. S., Q. Shen, K. Wang, Z. S. Zhang, and J. H. Zhao, 2015: Interdecadal change of the northward jump time of the western Pacific subtropical high in association with the Pacific decadal oscillation. J. Meteorol. Res., 29(1), 59−71, https://doi.org/10.1007/s13351-014-4040-4.
Ying, M., W. Zhang, H. Yu, X. Q. Lu, J. X. Feng, Y. X. Fan, Y. T. Zhu, and D. Q. Chen, 2014: An overview of the China Meteorological Administration tropical cyclone database. J. Atmos. Ocean. Technol., 31(2), 287−301, https://doi.org/10.1175/JTECH-D-12-00119.1.
Zhang, J. Y., L. G. Wu, and Q. Zhang, 2011: Tropical cyclone damages in China under the background of global warming. Journal of Tropical Meteorology, 27(4), 442−454, https://doi.org/10.3969/j.issn.1004-4965.2011.04.002. (in Chinese with English abstract
Zhang, W.-Q., L.-G. Wu, and X.-K. Zou, 2018: Changes of tropical cyclone tracks in the western North Pacific over 1979−2016. Advances in Climate Change Research, 9(3), 170−176, https://doi.org/10.1016/j.accre.2018.06.002.
Zhang, Z.-H., and L.-N. Zheng, 2020: Forecasting factors of the northward sharp turn of typhoons that make landfall. Marine Forecasts, 37(3), 46−53, https://doi.org/10.11737/j.issn.1003-0239.2020.03.006. (in Chinese with English abstract
Zhao, J. W., R. F. Zhan, Y. Q. Wang, S. P. Xie, and Q. Wu, 2020: Untangling impacts of global warming and Interdecadal Pacific Oscillation on long-term variability of North Pacific tropical cyclone track density. Science Advances, 6(41), eaba6813, https://doi.org/10.1126/sciadv.aba6813.