Araneo, D. C., S. C. Simonelli, F. A. Norte, M. Viale, and J. R. Santos, 2011: Caracterización de sondeos estivales del norte de Mendoza mediante el análisis de componentes principales y obtención de un índice de convección. Meteorológica, 36(1), 31−47. (in Spanish).
Barnes, L. R., E. C. Gruntfest, M. H. Hayden, D. M. Schultz, and C. Benight, 2007: False alarms and close calls: A conceptual model of warning accuracy. Wea. Forecasting, 22, 1140−1147, https://doi.org/10.1175/WAF1031.1.
Courvoisier, H. W., and T. Gutermann, 1971: Zur praktischen anwendung des föhntests von widmer. Rep. 21, 10 pp. [Available from http://www.agfoehn.org/doc/Courvoisier_1971.pdf]
Damiens, F., F. Lott, C. Millet, and R. Plougonven, 2018: An adiabatic foehn mechanism. Quart. J. Roy. Meteor. Soc., 144(714), 1369−1381, https://doi.org/10.1002/qj.3272.
Drechsel, S., and G. J. Mayr, 2008: Objective forecasting of foehn winds for a subgrid-scale alpine valley. Wea. Forecasting, 23(2), 205−218, https://doi.org/10.1175/2007WAF2006021.1.
Dürr, B., 2008: Automatisiertes verfahren zur bestimmung von föhn in alpentälern. Arbeitsbericht 223, Bundesamt für Meteorologie und Klimatologie, MeteoSchweiz, 22 pp. (in German)
Durran, D. R., 1990: Mountain waves and downslope winds. Atmospheric Processes over Complex Terrain, R. M. Banta et al., Eds., Springer, 59−81, https://doi.org/10.1007/978-1-935704-25-6_4.
Jackson, P. L., G. Mayr, and S. Vosper, 2013: Dynamically-driven winds. Mountain Weather Research and Forecasting, F. K. Chow et al., Eds., Springer, 121−218, https://doi.org/10.1007/978-94-007-4098-3_3.
Norte, F. A., 2015: Understanding and forecasting zonda wind (Andean Foehn) in Argentina: A review. Atmospheric and Climate Sciences, 5(3), 163−169, https://doi.org/10.4236/acs.2015.53012.
Otero, F., and F. A. Norte, 2015: Métodos de clasificación y climatología del viento Zonda en San Juan. Geoacta, 40(1), 45−53. (in Spanish).
Otero, F., and D. Araneo, 2021: Zonda wind classification using machine learning algorithms. International Journal of Climatology, 41, E342−E353, https://doi.org/10.1002/joc.6688.
Otero, F., F. Norte, and D. Araneo, 2018: A probability index for surface zonda wind occurrence at Mendoza city through vertical sounding principal components analysis. Theor. Appl. Climatol., 131(1−2), 213−225, https://doi.org/10.1007/s00704-016-1983-7.
Reinecke, P. A., and D. Durran, 2009a: The overamplification of gravity waves in numerical solutions to flow over topography. Mon. Wea. Rev., 137(5), 1533−1549, https://doi.org/10.1175/2008MWR2630.1.
Reinecke, P. A., and D. R. Durran, 2009b: Initial-condition sensitivities and the predictability of downslope winds. J. Atmos. Sci., 66(11), 3401−3418, https://doi.org/10.1175/2009JAS3023.1.
Smith, C. M., and E. D. Skyllingstad, 2011: Effects of inversion height and surface heat flux on downslope windstorms. Mon. Wea. Rev., 139, 3750−3764, https://doi.org/10.1175/2011MWR3619.1.
Smith, R. B., 2007: Interacting mountain waves and boundary layers. J. Atmos. Sci., 64(2), 594−607, https://doi.org/10.1175/JAS3836.1.
Sprenger, M., S. Schemm, R. Oechslin, and J. Jenkner, 2017: Nowcasting foehn wind events using the adaboost machine learning algorithm. Wea. Forecasting, 32(3), 1079−1099, https://doi.org/10.1175/WAF-D-16-0208.1.